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Abstract: Water scarcity is the most significant factor limiting coffee production, although some
cultivars can still have important drought tolerance. This study analyzed leaf transcriptomes of
two coffee cultivars with contrasting physiological responses, Coffea canephora cv. CL153 and Coffea.
arabica cv. Icatu, subjected to moderate (MWD) or severe water deficits (SWD). We found that
MWD had a low impact compared with SWD, where 10% of all genes in Icatu and 17% in CL153
reacted to drought, being mainly down-regulated upon stress. Drought triggered a genotype-specific
response involving the up-regulation of reticuline oxidase genes in CL153 and heat shock proteins
in Icatu. Responsiveness to drought also included desiccation protectant genes, but primarily,
aspartic proteases, especially in CL153. A total of 83 Transcription Factors were found engaged in
response to drought, mainly up-regulated, especially under SWD. Together with the enrollment
of 49 phosphatases and 272 protein kinases, results suggest the involvement of ABA-signaling
processes in drought acclimation. The integration of these findings with complementing physiological
and biochemical studies reveals that both genotypes are more resilient to moderate drought than
previously thought and suggests the existence of post-transcriptional mechanisms modulating the
response to drought.

Keywords: ABA signaling; climate changes; coffee; drought; functional analysis; leaf RNAseq;
transcription factors

1. Introduction

Along with the rapid expansion in population and global warming, water scarcity
has become a worldwide challenge for agriculture [1–3]. To cope with water deficits,
plants trigger a wide range of responses at the molecular, biochemical, and physiological
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levels [4,5]. At the molecular level, a response to drought usually includes transcriptional
and post-transcriptional modulations that lead to a differential expression of genes and
pathways, which ultimately promote metabolic and physiological changes associated with
plant acclimation [6–8].

Integrative approaches for large-scale transcriptomic studies have shown that re-
sponses include mainly two sets of genes, one directly involved in protecting cells from
stress and the other including regulatory proteins that modulate gene expression. The first
group includes water channel proteins and membrane transporters [9], key enzymes for
osmolyte biosynthesis (e.g., proline, sugars) [10], detoxification enzymes (e.g., catalase, su-
peroxide dismutase, ascorbate peroxidase) [8], enzymes for fatty acid metabolism, ferritin,
and lipid-transfer proteins [11], and proteins for the protection of macromolecules (e.g., late
embryogenesis abundant, antifreeze proteins and chaperones) [12]. A second important
group of responsive drought-induced genes that are activated by drought include transcrip-
tion factors (TFs) as the widely known dehydration responsive element binding (DREB)
TFs, as well as protein kinases and phosphatases implicated in the regulation of the stress
signal transduction to subsequent components in the pathway towards the nucleus [13–15].
Additionally, cellular changes in shape, turgidity, or changes in concentrations of solutes
and reactive oxygen species (ROS) are also assigned as early stress effects and signals
triggering the plant stress responses [16,17]. However, most of these genes have been
characterized in model plants such as Arabidopsis thaliana and are much less known in the
context of tolerant crop varieties. Thus, it is crucial to identify the respective ortholog genes
in each species.

Coffee (Coffea sp.), a valuable commodity export, is cultivated and exported by more
than 80 countries, mainly developing ones, in the tropical regions of the Americas, South-
east Asia, India, and Africa [18,19]. Despite a large number of Coffea species have been
identified, the international coffee trade is dominated by C. canephora (Robusta type of
coffee) and especially the polyploid C. arabica (Arabica type of coffee). Both species are
expected to be affected by climate changes [20,21], although some elite cultivars seem
to display a higher resilience to different abiotic stresses than earlier assumed [18,22–25].
Additionally, the fruit development of C. arabica seems to be quite sensitive to rising tem-
peratures and water shortage [26,27], and impacts in crop yields have already been noted
by local farmers due, presumably, to ongoing climate changes [21]. Coffea canephora is also
affected by drought, and countries that have heavily invested in the intensive monocul-
ture of this species (e.g., Vietnam) are predicted to be further impaired in 90% of its total
production area [28]. Moreover, the effects of drought could be potentially aggravated in
coffee plantations under full sunlight exposure [18].

In this context, new resilient lines must be developed to guarantee the sustainability
of the coffee crop. For that, identifying genes whose expression is associated with coffee
drought tolerance is crucial. Currently, there is evidence that C. canephora has some
tolerance to drought through enrichment of secondary compound metabolic genes, namely
antioxidant genes, which play an essential role in coffee drought response [29]. Recent
studies underline that at least some genotypes of C. canephora could be far more sensitive
to thermal stress than previously thought [30,31]. Other genotypes of C. arabica and
C. canephora were found to have the ability to endure harsh temperatures [23,24] and water
deficit [25] to a greater extent than usually assumed. In this framework, an extended
RNA-Seq analysis was performed to investigate transcriptomic leaf profile changes in
two drought-responsive coffee genotypes [25,27]. Upon subjecting the plants to a gradual
moderate or severe water deficit, we identified the transcriptomic mechanisms of drought
tolerance in these genotypes. The identified genes should constitute potential targets for
breeding drought-tolerant coffee varieties.
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2. Materials and Methods
2.1. Plant Material and Growth Conditions

In this study, we used 7-years old potted plants of two cropped genotypes (in Brazil)
from the two main producing coffee species, Coffea canephora Pierre ex A. Froehner cv.
Conilon Clone 153 (hereafter CL153) and C. arabica L. cv. Icatu Vermelho (hereafter Icatu),
an introgressed variety resulting from a cross between C. canephora and C. arabica cv.
Bourbon Vermelho that was further crossed with C. arabica cv. Mundo Novo. A total of 18
plants per genotype was grown in 80 L pots placed in walk-in growth chambers (EHHF
10000, ARALAB, Portugal) under controlled environmental conditions of temperature
(25/20 ◦C, day/night), relative humidity (ca. 70%), air [CO2] (380 µL L−1), photoperiod
(12/12 h), and irradiance (approximately 750 µmol m−2 s−1 at the third upper part of the
plants), without restrictions of water until applying the water treatments shown below,
nutrients as described in [32,33] or root growth space.

2.2. Water Stress Imposition and Leaf Water Status

Water conditions were imposed as previously described [25]. Briefly, the plants
were divided into three groups. In the first group, individuals were maintained well
irrigated (WW) throughout the experiment. In the other two groups, water deficit was
gradually imposed during two weeks by partially withholding irrigation (with a partial
water replacement of the amount lost in each pot) until stability of predawn leaf water
potential (Ψpd) to plant values between−1.5 and−2.5 MPa (moderate water deficit-MWD)
or below −3.5 MPa (severe water deficit-SWD). WW plants were maintained under full
irrigation (Ψpd >−0.35 MPa). These conditions represented approximately 80% (WW), 25%
(MWD) or 10% (SWD) of maximal water availability in pots [27]. After reaching the desired
Ψpd values for MWD or SWD conditions, the pot moisture was maintained for another two
weeks before leaf sampling. Leaf Ψpd was determined at predawn immediately after leaf
excision, using a pressure chamber (Model 1000, PMS Instrument Co., Albany, OR, USA).

2.3. RNA Extraction and Illumina Sequencing

Newly matured leaves from plagiotropic and orthotropic branches from the upper
third part (well illuminated) of each plant were collected under photosynthetic steady-
state conditions after 2 h of illumination, flash-frozen in liquid nitrogen and stored at
−80 ◦C, being finely powdered in liquid N2 prior to analysis. Total RNA was extracted
from 18 samples (two genotypes × three water treatments × three biological replicates)
using 20 mg of the frozen leaves. RNA was extracted using the Analytik-Jena InnuSPEED
Plant RNA Kit (Analytik Jena Innuscreen GmbH, Berlin, Germany) following [34]. RNA
quantity and quality were determined using BioDrop Cuvette (BioDrop, Manchester, UK)
and Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA Integrity
Number (RIN) for the samples ranged from 8.89 to 9.22. The messenger RNA (mRNA)
libraries were constructed with the Illumina “TruSeq Stranded mRNA Sample Preparation
kit” (Illumina, San Diego, CA, USA) and sequenced on an Illumina NovaSeq6000 at
Macrogen facilities (Macrogen, Geumcheon-gu, Seoul, Korea). Raw reads have been
deposited in the NCBI Sequence Read Archive, BioProject accession PRJNA729673.

2.4. Quality Analysis of Sequencing Data

High-quality reads were obtained after several steps of quality checks, including
trimming and removal of adaptor/primer and low-quality reads using FastQC version
0.11.8 [35] and Trimmomatic version 0.38 [36]. FastQ Screen version 0.13 [37] was used to
check for contaminants against the genome of the most common model organisms and
adapter databases (e.g., Mitochondria RNA, PhiX, Vector from UniVec database, FastQ
Screen rRNA custom database and FastQ Screen Adapters database).
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2.5. Reference-Based Mapping and Assembly

The filtered high-quality reads were mapped to the reference genome of C. canephora
downloaded from the Coffee Genome Hub (http://coffee-genome.org/download, accessed
on 4 January 2020) [38] using STAR version 2.6.1 [39]. Htseq-count v0.11.0 [40] was used
to count uniquely mapped genes. Samtools version 1.9 [41] and gffread version 0.9.9 [42]
were used throughout the analysis to obtain general statistics of the genome mapping.

2.6. Identification of Differentially Expressed Genes (DEGs)

Gene expression normalization of all samples was estimated with the DESeq method
(median of ratios normalization) to account for sequencing depth and RNA composi-
tion, which is appropriate for the differential expression (DE) analysis across samples. A
Principal Component Analysis (PCA) was performed on the expression data of genes,
FKPM normalized and log10-transformed, using the ggplot2 version 3.3.2 library [43] of
R software version 3.5.1 [44]. Through visual inspection of the PCA plot, the 7B replicate
was considered an outlier and thus excluded from the downstream analysis (Figure S1).
DESeq2 v1.28.1 [45] was used to check for differences in the relative abundance of the
genes between the different water treatments. The Benjamini–Hochberg approach was
used for controlling the false discovery rate, FDR [46]. Differentially expressed genes
(DEGs) were defined as genes with a normalized non-zero log2 fold change (FC) expression
and an FDR < 0.01. Python’s matplotlib library was used to plot Venn diagrams and bar
plots [47]. The functional annotation of the reference genome of C. canephora referred above
was used to search the top responsive DEGs. To better understand the effects of drought,
a specific analysis was performed among the DEGs annotated with the direct and child
GO terms “response to water deprivation” (GO:0009414) and “response to desiccation”
(GO:0009269). Additionally, due to its crucial importance in the acclimation response of cof-
fee plants to changing environmental conditions [23,33,48], a specific search was performed
among DEGs annotated with the following terms: “antioxidant activity” (GO:0016209),
“response to oxidative stress” (GO:0006979) under Antioxidant activity; “cellular respi-
ration” (GO:0045333), “mitochondrion” (GO:0005739), “malate dehydrogenase activity”
(GO:0016615), “pyruvate kinase activity” (GO:0004743) under Cellular respiration; “fatty
acid metabolic process” (GO:0006631) and LOX (GO:0004051, GO:0016702) under Lipid
metabolism; and “photosynthesis” (GO:0015979), “photosystem” (GO:0009521), “photo-
synthetic electron transport chain” (GO:0009767), “photorespiration” (GO:0009853) and
“chlorophyll biosynthetic process” (GO:0015995) under Photosynthesis.

2.7. Regulation Patterns of Transcription Factors

Blastx from the Basic Local Alignment Search Tool (BLAST) version 2.10.1 command
line tools from the NCBI C++ Toolkit was used to map the DEGs against Arabidopsis
thaliana homologs using a local Swissprot database, filtering gene hits by maximum
E-Value of 1.0 × 10−3 and minimum identities of 40% [49]. Then, to study the regula-
tion pattern of transcription factors (TFs) among the detected DEGs, a list of A. thaliana
TFs related to drought was retrieved from DroughtDB (http://pgsb.helmholtz-muenchen.
de/droughtdb/, accessed on 15 May 2021) and searched among DEGs. To complement
these analyses, TFs were also searched among DEGs if annotated with “DNA-binding
transcription factor activity” (GO:0003700) and “general transcription initiation factor
binding” (GO:0140296) in the reference genome. To understand the enrollment of protein
kinases and phosphatases in the regulation of drought, the following GO terms were also
searched among DEGs: “phosphatase activity” (GO:0016791) and “protein kinase activity”
(GO:0004672).

2.8. Enrichment Analysis of Gene Ontology

Gene Ontology (GO) enrichment analyses were applied to understand the functional
classification of DEGs through an over-representation analysis (ORA), using gProfiler [50]
under FDR < 0.05. REVIGO [51] was used to summarize results by removing redundant

http://coffee-genome.org/download
http://pgsb.helmholtz-muenchen.de/droughtdb/
http://pgsb.helmholtz-muenchen.de/droughtdb/
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GO terms with a similarity ≥0.5. Enrichment nonredundant data with these FDR and
similarity cutoffs were plotted using ggplot2. This same package was used to plot heatmap
with dendrograms to visualize DEGs based on the differential expression patterns between
the different treatments. To prevent highly differentially expressed genes from clustering
together without considering their expression pattern, log2 fold change was scaled by gene
across treatments (row Z-score).

3. Results
3.1. Overall Transcriptome Profiling and Mapping Statistics

Quality analysis, data trimming, and filtering generated an average of 24.8 million
(CL153) and 22.7 million (Icatu) clean reads, from an average of 25.1 and 23.0 million raw
reads, respectively. Overall, an average of 90% and 84% cleaned reads from CL153 and
Icatu, respectively, were mapped to the reference genome (Table S1). Statistical details for
each replicate are depicted in Table S1.

3.2. Differential Gene Changes of CL153 and Icatu in Response to Drought

In CL153, the lowest number of expressed genes was found under MWD (20052) and
the highest under WW conditions (20528; Figure 1; Table S2). In Icatu, the highest (20675)
and lowest (20157) number of expressed genes were observed under MWD and SWD
conditions, respectively (Figure 1; Table S2). Nevertheless, MWD triggered only 5% of
genes (999 DEGs) in CL153 and 4% (776 DEGs) in Icatu. Notably, the highest number of
DEGs was consistently found in response to SWD: 3373 in CL153 (17% all genes); 2055 in
Icatu (10% all genes) (Table S2). An average of 75% of DEGs were annotated with GO terms
in both genotypes, while the remaining were uncharacterized or with unknown functions,
according to the reference genome (Table S2).

Figure 1. The total number of expressed genes Coffea arabica cv. Icatu (Icatu) and C. canephora
cv. Conilon Clone CL153 (CL153) plants submitted to three different water availability conditions:
well-watered (WW), moderate water deficit (MWD), and severe water deficit (SWD).

Under drought conditions, DEGs were mostly down-regulated under MWD (CL153:
58.3%, Icatu: 80.0%) and SWD (CL153: 67.0%, Icatu: 74.8%) (Figure S2). This particular
response was associated with the drought severity level since only a partial number of
DEGs were commonly found under both MWD and SWD, either in CL153 (down-regulated:
22.2%, 517 DEGs; up-regulated: 29.0%, 344 DEGs; Figure 2A) or in Icatu (down-regulated:
23.7%, 414 DEGs; up-regulated: 10.7%, 65 DEGs; Figure 2B). Thus, in the two genotypes,
the majority of specific DEGs were found under SWD.

Besides the specificity linked with the level of water deficit, results also showed that
the two genotypes reacted differently to drought as only a small number of DEGs were
commonly found between genotypes and between water deficit treatments (115 down-
regulated and 27 up-regulated) (Figure 2C). Both CL153 and Icatu showed a low number
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of specific DEGs under MWD (57 down and 63 up in CL153; 160 down and 84 up in
Icatu). In comparison, more DEGs were found under SWD, being mostly down-regulated
(1046 down and 610 up in Cl153; 438 down and 183 up in Icatu; Figure 2C). This reveals a
high degree of up-regulated DEGs in CL153 under SWD, whereas, in Icatu, the number
of specific down-regulated DEGs was 2.4 times higher than the up-regulated ones. The
same pattern was found in the heatmap of treatment-specific DEGs that showed a small
genotype differentiation under MWD (Figure 3). In sharp contrast, a higher degree of
variation was found under SWD, especially in CL153, where DEGs were more up-regulated
in this genotype than in Icatu, in agreement with the previous analysis.
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Figure 2. The total number of differentially expressed genes (DEGs) found in Coffea arabica cv. Icatu
(Icatu) and C. canephora cv. Conilon Clone CL153 (CL153) plants submitted to moderate water deficit
(MWD) or severe water deficit (SWD) in comparison to well-watered plants. (A) Number of DEGs
found in CL153 that are specific to the MWD treatment (blue), specific to the SWD treatment (yellow),
and commonly found in both water deficit treatments (green) being down-regulated (left) or right-
regulated (right). (B) Number of DEGs found in Icatu that specific of the MWD treatment (purple),
specific of the SWD treatment (pink) or commonly found in both water deficit treatments (green)
being down-regulated (left) or right-regulated (right). (C) Distribution patterns of DEGs considering
the two genotypes together for down-regulated (left) or right-regulated (right) DEGs.
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Figure 3. Clustered heat maps and dendrograms of the normalized log2 fold change (FC) visualizing
the expression of significant (FDR < 0.01) treatment-specific differentially expressed genes (DEGs)
considering the effect of moderate water deficit (MWD) and severe water deficit (SWD) conditions
compared to well-watered plants (WW) in Coffea arabica cv. Icatu (Icatu) and C. canephora cv. Conilon
Clone CL153 (CL153) plants. Values were scaled by row using Z-scores. Hot colors represent up-
regulated DEGs, and cold colors represent down-regulated DEGs. Column color labels represent
water treatments (colors of treatments follow Figure 1).

3.3. Identification and Classification of DEGs

Under drought, the 10 top up-regulated DEGs in CL153 were primarily involved in ox-
idoreductase activity and FAD binding. For instance, under MWD, top up-regulated DEGs
in CL153 included several reticuline oxidase-like genes, as well as different cytochrome
P450 genes, a carotenoid cleavage dioxygenase, and the TF ERF027 (Tables 1 and S3).

Under SWD, the top DEGs in CL153 were involved in similar functions and at the same
level of fold changes as under MWD, also showing an up-regulation of reticuline oxidase
genes and mostly of an acid phosphatase gene (PAP20) involved in hydrolase activity and
metal ion binding (Tables 2 and S4). However, while under MWD, CL153 showed a down-
regulation of DEGs mostly involved in binding, auxin production, and transporter activity,
under SWD, the effect was two times higher, showing a strong down-regulation of the
ROP-interactive CRIB motif-containing protein 4 gene (FC = −21.55; Table 2).
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Table 1. Top 10 up- and down-regulated differentially expressed genes (DEGs) under moderate water deficit (MWD)
relative to well-watered (WW) C. canephora cv. Conilon Clone CL153 (CL153) plants. Molecular functions were retrieved
from UniprotKB database (* functions exclusive to A. thaliana homologs). Genes are descending fold changes (FC).

Gene ID Homolog Protein Name Molecular Function FC

Up-regulated

Cc09_g07380 AT1G30760 Putative Reticuline oxidase-like protein oxidoreductase activity; FAD
binding 11.17

Cc10_g00760 Putative Arabidopsis protein of
unknown function 11.00

Cc09_g07390 AT4G20820 Putative Reticuline oxidase-like protein oxidoreductase activity; FAD
binding 10.61

Cc02_g03420 ERF027 Putative Ethylene-responsive
transcription factor

DNA-binding; DNA-binding
transcription factor 10.11

Cc04_g10590 CYP82C2 Putative Cytochrome P450 82A1 oxidoreductase activity; heme
binding; iron ion binding 9.81

Cc06_g15980 LEA46 18 kDa seed maturation protein 9.67

Cc02_g29220 CYP75B1 Putative Cytochrome P450 750A1 oxidoreductase activity; heme
binding; iron ion binding 9.24

Cc01_g19640 Putative Basic 7S globulin aspartic-type endopeptidase
activity 9.12

Cc05_g00080 EM6 Late embryogenesis abundant protein
EMB564 8.96

Cc06_g06630 PUB22 E3 ubiquitin-protein ligase PUB22 ubiquitin-protein transferase
activity 8.94

Down-regulated
Cc07_g09010 Putative unknown protein −9.32
Cc02_g16790 SAUR50 Auxin-induced protein 15A −9.59

Cc04_g01940 HTH Hothead
oxidoreductase activity; FAD
binding; mandelonitrile lyase

activity *
−9.61

Cc11_g01760 Protein of unknown function, DUF642 −9.77
Cc02_g09710 TBL36 Trichome Birefringence-like36 O-acetyltransferase activity * −10.07

Cc00_g29810 CCR1 NAD(P)-binding Rossmann-fold
superfamily protein oxidoreductase activity * −10.22

Cc07_g15190 DOT3 Putative BTB/POZ domain-containing
protein DOT3 −10.51

Cc06_g01530 GPAT6 Glycerol-3-phosphate acyltransferase 6 transferase activity; phosphatase
activity −10.58

Cc05_g09310 PDF1 Putative uncharacterized protein −11.24
Cc06_g08040 AZI1 Putative uncharacterized protein protein self-association * −12.36

Table 2. Top 10 up and down-regulated differentially expressed genes (DEGs) under severe water deficit (SWD) relative
to well-watered (WW) C. canephora cv. Conilon Clone CL153 (CL153) plants. Molecular functions were retrieved from
UniprotKB database (* functions exclusive to A. thaliana homologs). Genes are descending Fold Changes (FC).

Gene ID Homolog Protein Name Molecular Function FC

Up-regulated

Cc06_g05620 PAP20 Probable purple acid phosphatase 20 hydrolase activity; metal
ion binding 13.03

Cc09_g07380 AT1G30760 Putative Reticuline oxidase-like protein oxidoreductase activity;
FAD binding 12.44

Cc09_g07390 AT4G20820 Putative Reticuline oxidase-like protein oxidoreductase activity;
FAD binding 11.53

Cc04_g10590 CYP82C2 Putative Cytochrome P450 82A1 oxidoreductase activity; heme
binding; iron ion binding 10.95
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Table 2. Cont.

Gene ID Homolog Protein Name Molecular Function FC

Up-regulated

Cc10_g00760 Putative Arabidopsis protein of
unknown function (DUF241) 10.92

Cc08_g11420 EXLB1 Expansin-like B1 10.92

Cc00_g15520 CWINV2 Beta-fructofuranosidase, insoluble
isoenzyme 1 hydrolase activity 10.54

Cc07_g04930 TBL19 Putative Trichome Birefringence-like 19 transferase activity * 10.20

Cc02_g24750 Carotenoid cleavage dioxygenase 7 oxidoreductase activity; metal
ion binding 9.82

Cc03_g15270 AT4G20820 Putative Reticuline oxidase-like protein oxidoreductase activity;
FAD binding 9.78

Down-regulated
Cc00_g18380 SDR2a Momilactone A synthase oxidoreductase activity * −9.93

Cc10_g02800 RL1 RAD-like 1 DNA-binding transcription factor
activity * −10.15

Cc01_g12960 EXPA4 Expansin-A4 −10.31
Cc01_g05920 GASA6 Protein GAST1 −10.48

Cc04_g12550 RGI3
Probable LRR receptor-like

serine/threonine-protein kinase
At4g26540

ATP binding; protein kinase
activity; peptide receptor activity *;

peptide-binding *
−10.56

Cc01_g11300 FLA11 Fasciclin-like arabinogalactan protein 11 −10.58

Cc11_g07530 RLP55 Putative LRR receptor-like
serine/threonine-protein kinase GSO1 −10.61

Cc11_g08360 Putative MLP-like protein 28 −10.72

Cc04_g15520 Putative Mitochondrial outer membrane
protein porin of 36 kDa

transmembrane transporter
activity −10.93

Cc03_g10850 RIC5 Putative ROP-interactive CRIB
motif-containing protein 4 −21.55

Under MWD, several heat shock proteins were among the top 10 up-regulated DEGs
in Icatu, namely the glycoside hydrolase family 79 gene that showed the highest regula-
tion (FC = 21.23), while the TF ORG2 was the most down-regulated DEG (FC = −25.66;
Tables 3 and S5).

Under SWD, Icatu top up-regulated DEGs were involved in binding and transporter
activity but mainly on transferase activities involving the UDP-glycotransferase 75D1
(FC = 20.01) while down-regulating the TF ORG2 as reported under MWD (Tables 4 and S6).

Table 3. Top 10 up and down-regulated differentially expressed genes (DEGs) under moderate water deficit (MWD) relative
to well-watered (WW) Coffea arabica cv. Icatu (Icatu) plants. Molecular functions were retrieved from UniprotKB database
(* functions exclusive to A. thaliana homologs). Genes are descending Fold Changes (FC).

Gene ID Homolog Protein Name Molecular Function FC

Up-regulated

Cc05_g08230 AT5G34940 Putative Glycoside hydrolase
family 79, N-terminal 21.23

Cc03_g06560 MYB59 Putative Transcription factor MYB48 transcription regulator activity;
DNA binding 8.02

Cc07_g18370 Predicted protein 7.06

Cc11_g04480 HSP18.1 18.5 kDa class I heat shock protein protein self-association *; unfolded
protein binding * 6.68

Cc00_g26020 ribonuclease Ps 6.31

Cc07_g13110 ERF1B Putative Ethylene-responsive
transcription factor 15

transcription regulator activity;
DNA binding 6.28

Cc11_g04470 HSP18.1 18.5 kDa class I heat shock protein protein self-association *; unfolded
protein binding * 6.13
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Table 3. Cont.

Gene ID Homolog Protein Name Molecular Function FC

Up-regulated

Cc02_g23670 HSP22.0 22.7 kDa class IV heat shock protein protein self-association *; unfolded
protein binding * 6.11

Cc04_g05250 HSP70-4 Heat shock 70 kDa protein
ATP binding; ATPase activity;

protein binding *; protein folding
chaperone *

6.05

Cc00_g04790 Hypothetical protein 5.99

Down-regulated

Cc01_g10980 UXT1 Uncharacterized membrane protein
At1g06890

transmembrane transporter
activity −9.06

Cc06_g02440 Laccase-4
copper ion binding;

hydroquinone:oxygen
oxidoreductase activity

−9.16

Cc06_g02050 RHO guanyl-nucleotide exchange factor
7

guanyl-nucleotide exchange factor
activity −9.17

Cc09_g03130 AT5G33370 GDSL esterase/lipase At5g33370 hydrolase activity, acting on ester
bonds −9.33

Cc07_g11210 PER64 Peroxidase 64 heme binding; metal ion binding;
peroxidase activity −9.85

Cc06_g01530 GPAT6 Glycerol-3-phosphate acyltransferase 6 acyltransferase activity;
phosphatase activity * −10.32

Cc04_g07330 ASPG1 Putative Protein Aspartic Protease in
Guard Cell 1

aspartic-type peptidase activity;
DNA binding −10.55

Cc00_g31960 COBL4 Cobra-like protein 4 −10.96

Cc02_g05960 LAC5 Laccase-5
copper ion binding;

hydroquinone:oxygen
oxidoreductase activity

−11.3

Cc06_g19110 ORG2 Putative Transcription factor ORG2 transcription regulator activity;
protein dimerization activity −25.66

Table 4. Top 10 up and down-regulated differentially expressed genes (DEGs) under severe water deficit (SWD) relative to
well-watered (WW) Coffea arabica cv. Icatu (Icatu) plants. Molecular functions were retrieved from UniprotKB database
(* functions exclusive to A. thaliana homologs). Genes are sorted by FC in descending order.

Gene ID Homolog Protein Name Molecular Function FC

Up-regulated
Cc09_g07390 AT4G20820 Putative Reticuline oxidase-like protein oxidoreductase activity; FAD binding 20.55

Cc01_g08410 Putative Lysosomal beta glucosidase hydrolase activity, hydrolyzing
O-glycosyl compounds 20.47

Cc10_g04010 Hypothetical protein 20.47
Cc03_g09220 UGT75D1 Putative UDP-glycosyltransferase 75D1 transferase activity 20.01
Cc08_g11420 EXLB1 Expansin-like B1 10.97
Cc02_g27970 Uncharacterized protein 9.08

Cc03_g06560 MYB59 Putative Transcription factor MYB48 transcription regulator activity; DNA
binding 9.04

Cc07_g18370 Predicted protein 8.24

Cc01_g04050 AT2G23950 Putative G-type lectin S-receptor-like
serine/threonine-protein kinase RLK1

ATP binding; protein serine/threonine
kinase activity; coreceptor activity * 8.05

Cc07_g09470 Hypothetical protein 8.04

Down-regulated
Cc00_g31960 COBL4 Cobra-like protein 4 −11.58
Cc04_g02380 AT3G16370 GDSL esterase/lipase APG hydrolase activity, acting on ester bonds −11.64
Cc03_g07230 AT4G13710 Probable pectate lyase 15 metal ion binding; pectate lyase activity −12.10
Cc02_g16500 PRP4 Hypothetical protein −12.45
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Table 4. Cont.

Gene ID Homolog Protein Name Molecular Function FC

Down-regulated

Cc07_g07560 XTH6
Probable xyloglucan

endotransglucosylase/hydrolase
protein 6

hydrolase activity, hydrolyzing
O-glycosyl compounds;

xyloglucan:xyloglucosyl transferase
activity

−12.86

Cc03_g09190 XTH6
Probable xyloglucan

endotransglucosylase/hydrolase
protein 16

hydrolase activity, hydrolyzing
O-glycosyl compounds;

xyloglucan:xyloglucosyl transferase
activity

−12.87

Cc01_g11300 FLA11 Fasciclin-like arabinogalactan protein 11 −13.20
Cc10_g04590 SBT1.8 Putative Subtilisin-like protease serine-type endopeptidase activity −13.34
Cc08_g04660 SOT15 Putative Cytosolic sulfotransferase 15 sulfotransferase activity −13.39
Cc02_g17500 RL1 Hypothetical protein transcription regulator activity −13.91

3.4. Regulation Patterns of DEGs Directly Linked to Water Deprivation and Desiccation

To better understand the impacts of water deficit, a specific search performed among
DEGs annotated with “response to water deprivation” (GO:0009414) or “response to
desiccation” (GO:0009269) found 22 additional DEGs, mostly expressed under SWD in
the two genotypes (Table 5). In CL153, these drought-responsive DEGs were slightly up-
regulated in MWD (5 out of 8) and more down-regulated under SWD (8 out of 14). In Icatu,
these DEGs were all down-regulated under MWD (0 up and 7 down) and mostly under
SWD (3 up and 9 down). Notably, the Desiccation protectant protein Lea14 was found
to be commonly up-regulated by CL153 (MWD and SWD) and Icatu (only under SWD).
Additionally, a large majority of DEGs (10 out of 22) were linked to the Aspartic Protease in
Guard Cell 1 gene (ASPG1), being all down-regulated in Icatu under the two water deficits,
while some were up-regulated in CL153. Many of these drought-responsiveness DEGs
were linked with the 4th chromosome of C. canephora (Figure S3).

Table 5. Differentially expressed genes (DEGs) under moderate water deficit (MWD) or severe water
deficit (SWD) relative to well-watered (WW) C. canephora cv. Conilon Clone CL153 (CL153) and
Coffea arabica cv. Icatu (Icatu) plants. Selected DEGs were annotated with the Gene Ontology (GO)
terms: “response to water deprivation” (GO:0009414), “response to desiccation” (GO:0009269). Red:
up-regulated DEGs; blue: down-regulated DEGs.

Gene ID Homolog Protein Name CL153 Icatu

MWD SWD MWD SWD
Response to Water Deprivation

Cc06_g15980 AT5G06760 18 kDa seed maturation protein 9.67 9.19

Cc04_g07360 AT3G18490 Putative Protein Aspartic Protease in
Guard Cell 1 5.24 −4.43

Cc04_g07380 AT3G18490 Putative Protein Aspartic Protease in
Guard Cell 1 4.35

Cc11_g05800 Annexin D5 1.48 1.49

Cc04_g09640 AT3G18490 Protein Aspartic Protease in Guard
Cell 1 −5.00 −6.97

Cc07_g07560 AT5G65730
Probable xyloglucan

endotransglucosylase/hydrolase
protein 6

−6.94 −12.86

Cc04_g07330 AT3G18490 Putative Protein Aspartic Protease in
Guard Cell 1 −9.13 −10.19

Cc04_g07360 AT3G18490 Putative Protein Aspartic Protease in
Guard Cell 1 4.42 −3.48

Cc04_g07380 AT3G18490 Putative Protein Aspartic Protease in
Guard Cell 1 3.30 −3.23

Cc11_g05800 Annexin D5 1.49
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Table 5. Cont.

Gene ID Homolog Protein Name CL153 Icatu

MWD SWD MWD SWD
Response to Water Deprivation

Cc07_g15660 AT2G22125 C2 domain-containing protein −1.71 −2.17

Cc04_g08280 AT5G08120 Putative movement protein-binding
protein 2C −2.83

Cc04_g09640 AT3G18490 Protein Aspartic Protease in Guard
Cell 1 −4.84 −4.24

Cc04_g07350 AT3G18490 Putative Protein Aspartic Protease in
Guard Cell 1 −5.66 −3.86 −6.28

Cc07_g07560 AT5G65730
Probable xyloglucan

endotransglucosylase/hydrolase
protein 6

−5.71 −4.75

Cc02_g15480 AT4G18780 Cellulose synthase A catalytic
subunit 8 (UDP-forming) −6.4 −7.5 −8.73

Cc04_g07330 AT3G18490 Putative Protein Aspartic Protease in
Guard Cell 1 −9.27 −10.55

Cc04_g07370 AT3G18490 Putative Protein Aspartic Protease in
Guard Cell 1 −1.93 −3.31

Cc01_g21050 Sucrose synthase 2 2.64
Response to desiccation

Cc02_g38620 Desiccation protectant protein Lea14
homolog 1.76 1.20 1.50

Cc01_g08980
Late embryogenesis abundant (LEA)

hydroxyproline-rich glycoprotein
family

−3.16

Cc04_g03400
Putative Late embryogenesis

abundant (LEA) hydroxyproline-rich
glycoprotein family

1.60

3.5. Regulation Patterns of Photosynthetic and Other Biochemical Coffee Related DEGs

Due to the fundamental role of energy pathways (photosynthesis and respiration),
antioxidative protection and membrane lipid dynamics involved in coffee acclimation to
environmental stresses, a specific search was also performed among the DEGs associated
with these processes. Results showed that an important set of responsive DEGs (184) associ-
ated with such crucial biochemical coffee processes were affected by drought, mostly when
considering SWD, where the majority of these DEGs were detected (Table S7; Figure 4).

Drought affected a similar number of DEGs related to photosynthesis in the two geno-
types (50 in CL153 and 48 in Icatu), all down-regulated under both water deficits (Figure 4).
While MWD barely affected this category of DEGs, they were down-regulated under SWD
(from 7 to 43 in CL153 and 0 to 48 in Icatu). DEGs linked to the lipid metabolism were also
mostly down-regulated in CL153 (11 out of 15 in MWD; 14 out of 21 in SWD), whereas in
Icatu, they were all down-regulated (5 under MWD; 16 under SWD). Antioxidant activity
related DEGs also followed this general pattern, being mostly down-regulated in both
genotypes, especially under SWD (CL153: 16, Icatu: 13). The number of these DEGs
significantly increased from MWD to SWD, especially in CL153 that also increased the level
of up-regulated DEGs under the harshest drought condition. By contrast, DEGs associated
with cellular respiration were mostly up-regulated in CL153 under SWD (20 out of 34),
while in Icatu, they were all up-regulated under MWD (all 4).
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Figure 4. The proportion of significantly up-regulated (red) and down-regulated (blue) DEGs associated to physiological
and biochemical responses in coffee that were found under moderate water deficit (MWD) and severe water deficit (SWD)
relative to the well-watered (WW) control plants in (A) CL153 and (B) Icatu. DEGs represented in this plot were annotated
with at least one of the following GO terms: “antioxidant activity” (GO:0016209), “response to oxidative stress” (GO:0006979)
under Antioxidant activity; “cellular respiration” (GO:0045333), “mitochondrion” (GO:0005739), “malate dehydrogenase
activity” (GO:0016615), “pyruvate kinase activity” (GO:0004743) under Cellular respiration; “fatty acid metabolic process”
(GO:0006631), LOX (GO:0004051, GO:0016702) under Lipid metabolism; and “photosynthesis” (GO:0015979), “photosystem”
(GO:0009521), “photosynthetic electron transport chain” (GO:0009767), “photorespiration” (GO:0009853), “chlorophyll
biosynthetic process” (GO:0015995) under Photosynthesis.

3.6. Regulation Patterns of Transcription Factors among Responsiveness DEGs

The search of Arabidopsis thaliana homologs’ Transcription Factors (TFs) among the
DEGs found only five TFs (Table S8). The Ethylene-responsive TF (WIN1), the TF MYB60,
and the ABC transporter G family member 22 (ABCG22) were down-regulated under
SWD in the two genotypes. Among the remaining TFs (all found only in CL153), the
Dehydration-responsive element-binding protein 1A (DREB1A) and the NAC domain-
containing protein 55 (NAC055) were up-regulated regardless of the drought severity. In
contrast, the ABC transporter G family member 22 (ABCG22) was down-regulated only
under SWD.
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Given that this analysis revealed a very low number of the TFs, we also searched
DEGs annotated in the reference genome as TFs. With this search, a total of 83 TFs were
found among DEGs, mostly in CL153 and predominantly under SWD: 26 and 62 TFs
in CL153 plants, and 17 and 32 TFs in Icatu plants under MWD and SWD, respectively
(Table S8). The majority of TFs were up-regulated in CL153, especially under SWD (34 up
and 28 down) than under MWD (21 up and 5 down). The same pattern was reported for
Icatu, with a high number of TFs being found under SWD (17 up and 15 down) and under
MWD (6 up and 11 down). In both drought treatments, the Ethylene-responsive TF ERF027
followed by the Dehydration-responsive element-binding protein 1D (DREB1D) were the
most up-regulated TFs in CL153 (Table S8). In Icatu, the ethylene-responsive transcription
factor 15 was up-regulated under the two water deficits levels, together with the basic
leucine zipper 6 under MWD and the basic leucine zipper 5 under SWD (Table S8).

3.7. Regulation Patterns of Phosphatases and Protein Kinases DEGs

Due to its importance in stress acclimation, a specific search was performed to under-
stand the patterns of phosphatases and protein kinases among DEGs. A total of 49 phos-
phatase activity-DEGs were detected with a prevalence under SWD and in higher numbers
in CL153 (Table S9). Approximately one-third of them were up-regulated in CL153 (13)
and one-fifth in Icatu (10) under SWD, with a notable up-regulation of the phosphatase 2C
74 in CL153 and the Major allergen (Mal D1) in Icatu (Table S9).

Drought had a significant impact on 272 protein kinases (Table S9). Under MWD, a
similar number of protein kinases was detected in the two genotypes (38), while SWD had
a higher impact on protein kinases that were mostly down-regulated by this stress (181 in
CL153 vs. 96 in Icatu). Besides an uncharacterized kinase protein, SWD triggered the most
up-regulation of the G-type lectin S-receptor-like serine/threonine-protein kinase (RLK1)
in CL153, which was also the most up-regulated kinase in Icatu (Table S9).

3.8. Enriched GO Terms of Drought-Related DEGs

Overall, in both genotypes, there was an increase in enriched GO terms as drought
severity increased, being predominant in down-regulated DEGs (Figure 5). Results revealed
a very specific response to drought, with the catalytic activity being the only category
commonly enriched in both drought treatments and both genotypes. Under MWD, GO
terms categories were predominantly enriched in Icatu (16 in Icatu vs. 5 in CL153). Even
so, only CL153 showed an enrichment in up-regulated DEGs linked to catalytic and DNA-
binding TF activities (Figure 5). SWD had a stronger impact on a high number of categories
(30 in CL153 and 31 in Icatu), with 20 of them being commonly altered in both genotypes.
Under this stress, only CL153 showed enriched categories in up-regulated DEGs that were
linked to the nucleus, DNA-binding TFs, and oxidoreductase activities.
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4. Discussion
4.1. Impacts of Water Deficit on the Transcriptomic Profile of Coffea canephora (CL153) and
C. arabica (Icatu)

The present study demonstrated that water deficit alters the transcriptome profile in
the two coffee genotypes. Thousands of expressed genes were identified and annotated
(Figure 1; Table S1) in agreement with previous drought studies in coffee [29,52,53]. How-
ever, contrary to those studies, we examined the effects of a long-term drought experiment
in which stress has been imposed gradually. In addition, this study had the advantage of
comparing two genotypes from different coffee species that have been found to display
distinct physiological resilience to SWD conditions, particularly at the photosynthetic func-
tioning and apparatus components [24,25]. Our findings showed that only a small number
of genes was affected by MWD in the two genotypes (CL153: 5%; Icatu: 4% DEGs), whereas
a substantial impact was observed under SWD (CL153: 17%; Icatu: 10% DEGs; Table S2;
Figures 2 and 3). In comparison, in the drought-sensitive C. canephora cv. Conilon 109 only
0.59% of genes responded to drought, while 3.63% were found in the drought-tolerant
C. canephora cv. Conilon 120, in a 14-day drought experiment [29]. Therefore, the high
responsiveness values found here under MWD (in a drought level similar to [29]) suggests
a high drought tolerance in the coffee cultivars of this study (CL153 and Icatu). In fact,
under MWD, the potential functioning of the photosynthetic apparatus of these plants was
not significantly impaired [19], although some protective mechanisms (e.g., zeaxanthin
and HSP70 content, antioxidative activity) already begun to be reinforced (Semedo et al.,
unpublished data).

The genes responsive to drought also differed significantly between the two coffee
genotypes (Tables 1–4). In CL153, reticuline oxidase genes were predominant in the two
water deficit levels, including the most up-regulation of PAP20. Several antioxidant genes
such as peroxidase 4, thioredoxin, and FAD-related genes as reticuline oxidases have been
previously identified in this genotype as being involved in stress acclimation, including
high temperatures [34]. Thus, the up-regulation of PAP20, an acid phosphatase involved in
hydrolase activity and metal ion binding, helps to alleviate the PAP stress signal that usually
accumulates during drought and light stress, inducing the expression of stress-responsive
genes [54], which could regulate the impact of water deficit in CL153. Reticuline oxidase
genes were also up-regulated in CL153 even under MWD, together with cytochrome P450,
a carotenoid cleavage dioxygenase, and the TF ERF027 (Table 1). The up-regulation of
these genes, together with the TF ERF027, is probably linked to a protective mechanism
of CL153 to avoid oxidative damage, as previously documented in this genotype [55].
Carotenoids are essential components of the photosynthetic apparatus, being susceptible
to oxidation processes that break the carotenoid backbone [56]. This cleavage reaction
is catalyzed by carotenoid cleavage dioxygenases leading to apocarotenoids that usually
arise through the attack of ROS [57]. Apocarotenoids have an essential role in abiotic stress
response, acting as precursors of ABA synthesis that coordinates plant responses to stress,
namely stomata closure to minimize water loss during drought and therefore suggests the
activation of ABA-related mechanisms to minimize drought in CL153, as shown in other
drought-tolerant coffee genotypes [29]. This is in line with the increase of ABA synthesis
found under MWD and SWD in CL153 (although also in Icatu) plants [19]. Specifically, the
strong down-regulation of the ROP-interactive CRIB motif-containing protein 4 under SWD
also suggests the involvement of ABA in the response of drought in this genotype. These
types of genes are usually involved in the interaction between auxin- and ABA-regulated
processes, which often show an antagonistic effect, that is, positively regulating auxin
signaling while negatively regulating ABA signaling [58].

In contrast, several heat shock genes were up-regulated in Icatu even under MWD,
as the glycoside hydrolase family 79, in line with the higher abundance of the heat shock
protein 70 kDa (HSP70) (unpublished data). Under SWD, genes involved in binding,
transporter, and transferase activities were up-regulated, namely the UDP-glycotransferase
75D1. These genes are involved in a high number of developmental processes and stress
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responses, including cell wall modification, plant hormone activation, and the production
of antioxidants in response to stresses, including drought [59,60], which would counter-
balance the down-regulation of TFs (ORG2) under the two water deficits (see also below).
In coffee, as in other plants, ROS can be scavenged by several enzymes and non-enzyme
antioxidants, such as ascorbic acid, glutathione, carotenoids, phenolic compounds, ascor-
bate peroxidase, or catalase [61], which are usually strongly reinforced in Icatu under
drought [62] and would explain why this genotype can endure even the effects of ex-
treme water deficit [25], beyond the transcriptomic results found here. Under drought,
particularly under SWD, we found a down-regulation of DEGs associated with impor-
tant physiologically and biochemically related processes, such as photosynthesis, lipid
metabolism, cellular respiration, and antioxidant activity (except the cellular respiration
in Icatu under MWD; Figure 4). The impact of the SWD level on the transcripts of the
two genotypes was also revealed by the enrichment analysis that showed a prominent
down-regulation of GO terms involved in general metabolic processes, integral compo-
nents of the membrane, and especially in catalytic activities (Figure 5). In fact, up-regulated
enriched GO terms were only found in CL153 and involved catalytic and DNA-binding TF
activities under MWD, while under SWD, the nucleus, oxidoreductase, and DNA-binding
TF activities were enriched (Figure 5). However, previous physiological, biochemical, and
proteomic studies revealed an almost insensitivity of Icatu to the severe drought impact, at
least in the C-assimilatory pathway functioning, as well as a stronger triggering of protec-
tive molecules [24,25,62]. This suggests the involvement of post-transcriptional regulations
and indicates the need for complementary integrated studies considering several layers
of plant response, from physiology and biochemistry to molecular levels. Such studies
would be crucial to understand transcriptomic findings in the context of plant acclimation
to environmental constraints [34].

4.2. Role of Aspartic Proteases and Protectant Proteins in Water Deprivation and Desiccation
in Coffee

Among the 22 DEGs involved in response to drought, ten were related to the As-
partic Protease in Guard Cell 1 (ASPG1; Table 5). These genes have been identified in
different plant species being the ASPG1 usually involved in plant acclimation to drought
stress [63,64]. Over the last decade, an increasing number of publications have highlighted
the involvement of aspartic proteases in plant defense responses against a diversity of
abiotic and biotic stresses [65,66]. For instance, plants overexpressing aspartic proteases
as APA1 have been shown to be more tolerant to water deficit due to changes in stomatal
behavior induced by the regulation of the ABA signaling pathway [67]. In Arabidopsis, the
ASPG1 has been shown to be involved in drought stress resistance, in addition to its role
in the degradation of seed storage proteins [68,69]. Arabidopsis mutants overexpressing
ASPG1 were shown to recover more efficiently from drought since ASPG1 led to a signifi-
cant increase in ABA sensitivity by guard cells and activation of antioxidant enzymes that
prevent plants from oxidative damage [68]. A gene homologous to ASPG1 from potato has
also been shown to be down-regulated under drought and up-regulated upon re-watering,
suggesting a role under drought stress [65]. Thus, the up-regulation of ASPG1 in CL153
would help this genotype to mitigate the effects of drought. By contrast, a down-regulation
of this gene was observed in Icatu, even though a previous study found an increase in
ABA, and a strong stomatal conductance reduction in this genotype [25], which are related
to the gene expression found here.

Drought tolerance in the coffee genotypes also involved the up-regulation of Lea14
in CL153 (under the two water deficits) and in Icatu (under SWD). Late embryogenesis
abundant proteins (Lea) have been found in a large number of plants being up-regulated
during osmotic stress, where they bind to enzymes to prevent loss of activity functioning
as cellular stabilizers during stress conditions [70]. Lea are also expressed under water
deprivation conditions and associated with improved drought tolerance by inducing rapid
stomatal closure [71,72]. Thus, the overexpression of Lea14 could also be involved in the
water scarcity response of these two coffee genotypes.
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4.3. Drought-Responsiveness Transcription Factors

In addition to protective proteins, drought also triggered a high number of TFs in
the two coffee genotypes (e.g., 88 TFs,) that were mainly up-regulated (Table S8). This up-
regulation of TFs in response to drought was more frequent under SWD than under MWD
and higher in CL153 than in Icatu, suggesting an important role in regulating drought stress
tolerance, potentially through improved cellular protection, and particularly in the first
genotype. TFs usually regulate genes involved in cellular protection from stress damage
(e.g., osmoprotectants, antioxidants), as well as signal transduction and transcriptional
regulation [73]. In coffee, several TFs have been previously observed to respond to drought
exposure. For instance, a wide-throughout transcriptomic study found only 22 probable
responsive TFs, namely from the Myb superfamily [29], being the overexpression of TFs,
including the DREB gene family also reported [74–76]. Likewise, in our study, four TFs
were found to be significantly up-regulated in CL153 under drought (ERF027, DREB1D,
DREB1A, and NAC055 in both water deficits) and three others in Icatu (TF15 under the
two water deficits, plus basic leucine zipper 6 under MWD, and zipper 5 under SWD)
suggesting their involvement in the drought-response tolerance of these genotypes. In fact,
ERF TFs usually regulate responses to abiotic stresses, including cold, drought, heat, and
salt, being also involved in hormone signaling and hormone-mediated stress-responses
through stress phytohormones as ABA [77,78] and ethylene [79]. TFs as DREBs are induced
upon drought imposition, positively regulating drought-responsive genes [63,80] such
as the Lea previously reported in this study. DREB/CBF belongs to the ERF (ethylene-
responsive element binding factors) superfamily of TFs that play a pivotal role in adaptation
to biotic and abiotic stresses [81]. NAC TFs are also relevant in ABA and ethylene pathways
responding to drought stress [82]. When cells are under water deficit, ABA accumulates
and binds to soluble receptors. These results in the release and activation of Open Stomata
genes (members of protein kinases) that phosphorylate basic leucine zipper TFs to control
gene expression in the nucleus [83]. Therefore, the overexpression of these genes could
sustain an enhanced drought tolerance [84], as observed in these two coffee genotypes [25].
Expression of ERFs can be induced by ethylene and ABA under biotic and abiotic stresses
that also interact with other plant hormone pathways, such as those regulated by salicylic
acid or gibberellins, and suggesting coordinated interaction of hormone signaling pathways
to regulate the expression of TF genes during stress responses [81]. ERFs also seem to
regulate ROS-responsive genes, resulting in decreased accumulation of ROS and enhancing
tolerance to multiple abiotic stresses such as drought, salt, and freezing [85].

4.4. DEGs Involved in Phosphatases and Protein Kinases Affected by Drought

Protein phosphatases and kinases are major post-translational regulators of numerous
cellular processes and signaling networks [86]. Protein kinases pathways are activated
by sequential phosphorylation leading to the regulation of TFs and protective enzymes
in response to several stresses, including drought [87]. A high up-regulation of phos-
phatase genes was reported under SWD (Table S9), particularly in CL153, suggesting the
involvement of these genes in the drought response. The phosphatase 2C 74 that was
overexpressed in CL153 under SWD is part of a major group of protein phosphatases in
plants, having important roles in various biological processes [88]. Several studies have
shown that PP2 genes are involved in the regulation of the ABA signaling pathway by
modulating kinase activities in response to abiotic stresses [89]. Notably, the up-regulation
of the major allergen Mal D1 phosphatase in Icatu under SWD (Table S8) could raise a
significant concern since this gene was initially thought to be a major allergen in several
fruits [90]. However, other studies showed that these proteins are also synthesized in
response to biotic and abiotic stresses [91,92] and, thus, it would be interesting to deter-
mine if resistance to stresses could have consequences in terms of the allergenicity of the
agronomic product.

G-type lectin S-receptor-like serine/threonine protein kinases are positive regulators
of plant tolerance to several stresses [93,94]. For instance, transcriptomic analyses in foxtail
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millet have shown their participation in the drought tolerance response [95]. Thus, the
highest up-regulation of RLK1 in both CL153 and Icatu under SWD agrees with its role
in drought regulation in coffee, most likely also triggered by ABA signaling pathways
induced by protein phosphatases as referred above. Ultimately, the primary response
beyond ABA levels will be the stomatal closure in coffee leaves, regulating ion transport
in guard cells and decreasing drought severity in coffee genotypes as reported in other
species [96–98].

4.5. Coping with Drought: Lessons from Crossed Transcriptomic, Physiological, and
Biochemical Studies

Climate changes are expected to include an increased frequency of water scarcity
events, including the intensity of severity and duration, posing a growing threat to coffee’s
global supply chain. Agroforestry systems can be useful to mitigate some of these harsh
effects, reducing the risk of coffee production losses and contributing to the sustainability
of crops [18,31]. However, to maintain the global supply of coffee, it is also important
to promote the screening and development of tolerant varieties to face the increasingly
expected impacts of droughts.

At the molecular level, several studies have identified candidate genes for drought tol-
erance in C. canephora (e.g., [29,76,99–101]) and C. arabica (e.g., [52,76,102]). These candidate
genes mainly encompass TFs as the DREB-like genes DREB1D, ERF017, EDR2 [29,74,76,102],
genes related to ABA synthase, ABA receptors, and protein phosphatases such as PYL8a,
PYR1, SNRK2.8 [29,103], and mainly protective genes, including those associated with ROS
control and removal, such as CuSOD1, CuSOD2, APX1, APX5, APX6, HSP70, ELIP, Chape20,
and Chape60 [29,48,100,104–106]. Additionally, drought studies also found increases in pro-
tective proteins that could improve thermal dissipation processes (PsbS) and promote the
protective cyclic electron transport around photosystems I and II when CO2 supply to the
carboxylation sites in the chloroplast is greatly diminished due to stomata closure [24,25].
These genes (and proteins) are usually overexpressed in coffee genotypes and are assumed
to contribute to maintaining the photochemical efficiency under stress, at least in some
genotypes [34,48,102].

The novel mRNA-Seq study reported here provided information on qualitative and
quantitative differences between the two cultivars, CL153 and Icatu. Overall, comparative
transcriptome analysis led to the identification of drought-responsive genes and genotype-
dependent genes responsible for the different drought tolerance responses, the TFs ERF027,
DREB1D, and the basic leucine zipper genes, as well as genes linked to water deprivation
and desiccation, the ASPG1 and the protectant Lea14. These genes will be essential for
future crop improvement programs, such as the development of drought-resilient coffee
varieties. However, some of the transcriptomic results found here do not fully agree with
earlier physiological and biochemical studies showing a greater tolerance of Icatu than
CL153 under SWD. Icatu has previously been shown to be barely affected by drought,
showing minor impacts on photosynthetic functioning (e.g., Amax, Fv/Fm) and compo-
nents (e.g., electron carriers, photosystems, and ribulose-1,5-bisphosphate carboxylase
oxygenase (RuBisCO) activity) under SWD, in contrast to CL153 which was clearly af-
fected. This better performance of Icatu under such harsh water shortage conditions was
associated with the triggering of mechanisms of (thermal) energy dissipation and ROS
control over the photosynthetic machinery [24,25,62]. Such enrichment of detox pathways
was also accompanied by metabolic and proteomic changes in Icatu, which included the
reinforcement of thylakoid electron transport rates and some electron carriers, and the trig-
gering of protective cyclic electron transport involving both photosystems. These processes
would help maintain the photochemical use of energy while controlling the presence of
reactive molecules of chlorophyll and oxygen [24,25,107]. In this context, the existence
of strong post-transcriptional regulations is very likely, probably involving alternative
splicing, noncoding RNAs (including siRNA, miRNA, lncRNA), RNA-binding proteins
(RBPs) as well as protein modifications [108]. In the future, combining these technological
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methods with bioinformatic tools and physiological experiments will allow a more holistic
insight into the regulation and control of biological processes in coffee.

5. Conclusions

• Even though drought had an impact on the leaf transcriptome of both coffee geno-
types, our results revealed that both genotypes are more drought-resistant than other
coffee cultivars.

• Drought triggered a specific response associated with the magnitude of water deficit,
which was also genotype-dependent since few DEGs and pathways were common to
treatments and both genotypes. By comparison, MWD only had a minor effect on the
transcripts of both genotypes.

• There was a predominance of protective genes (more in CL153) associated with
antioxidant activities, including genes involved in water deprivation and desiccation,
such as Lea and aspartic proteases.

• A significant number of TFs, including ERF, DREB, and the leucine zipper, were found
to be significantly up-regulated under drought. Together with the large number of
phosphatases and protein kinases we found, these results suggest the involvement of
ABA signaling in the drought tolerance of these genotypes.

• Coupled with the previous physiological and metabolic results, our study provides
novel and timely information showing several layers of response and suggesting the
existence of post-transcriptional regulations in the two coffee genotypes, which should
be further investigated.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11112255/s1, Figure S1: Principal component (PC) analysis of all log transformed
gene expression data from Coffea canephora cv. Conilon Clone CL153 (CL153) and C. arabica cv.
Icatu (Icatu) plants submitted to three different water availability conditions: well-watered (WW),
moderate water deficit (MWD), and severe water deficit (SWD). A, B, C, D, and E correspond to
biological replications. Each treatment is represented by the colors depicted in Figure 1 and contains
three biological replicates, depicted in Table S1. The percentage of variance is indicated in each
axis, Figure S2: The effect of moderate (MWD) and severe (SWD) water deficit on the number of
up- and down-regulated DEGs in plants of Coffea canephora cv. Conilon Clone CL153 (CL153) and
C. arabica cv. Icatu (Icatu), Figure S3: Clustered heat map and dendrogram of the differentially
expressed genes (DEGs) associated with drought, in plants of Coffea arabica cv. Icatu (Icatu) and C.
canephora cv. Conilon Clone CL153 (CL153) submitted to either moderate water deficit (MWD) or
severe water deficit (SWD) in relation to well-watered (WW) plants. DEGs were selected if annotated
with the Gene Ontology (GO) terms “response to water deprivation” (GO:0009414) and “response
to desiccation” (GO:0009269). Hot colors represent up-regulated DEGs, and cold colors represent
down-regulated DEGs. Numbers in the right column indicate the chromosome of the retrieved DEGs,
Table S1: Summary of sequencing and mapping of reads from Coffea canephora cv. CL153 (CL153)
and C. arabica cv. Icatu (Icatu) samples. A, B, C, D, and E correspond to biological replications.
Plants were grown in two different stress water conditions, mild water deficit (MWD) and severe
water deficit (SWD) and the control well-watered plants (WW). RAW READS: number of reads
obtained after sequencing. CLEAN READS: number of reads passing the Illumina quality filters
and downstream filters. CLEAN %: percentage of reads passing filters compared to the number
of raw reads. UNIQUE: number of reads aligned to a unique position. UNIQUE %: proportion of
reads aligned to a unique position compared to the number of clean reads. MULTIPLE MAP: number
of reads aligned to exons of several overlapping genes. MULTIPLE MAP %: proportion of reads
aligned to exons of several overlapping genes compared to the number of clean reads. UNMAPPED
%: proportion of non-aligning reads compared to the number of clean reads, Table S2: Number
of total expressed genes, total differentially expressed genes (DEGs), and GO annotated DEGs in
Coffea canephora cv. CL153 (CL153) and C. arabica cv. Icatu (Icatu) plants submitted to three different
water availability conditions: well-watered (WW), moderate water deficit (MWD), and severe water
deficit (SWD). DEGs represent the number of significant genes found to be differently expressed
between each water treatment and the control (MWD vs. WW and SWD vs. WW, respectively),
selected by DESeq2 and filtered by log2 fold change (FC) 6= 0 and a false discovery rate (FDR) < 0.01,
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Table S3: Full list of differentially expressed genes (DEGs) in C. canephora cv. CL153 (CL153) found
between moderate water deficit (MWD) vs. well-watered (WW) plants. Gene identification and
protein name according to Coffea canephora functional annotation retrieved from the Coffee Genome
Hub (http://coffee-genome.org: 4 January 2020). DEGs were selected with DESeq2 and filtered by
log2 fold change (FC) 6= 0 and false discovery rate (FDR) < 0.01, Table S4: Full list of differentially
expressed genes (DEGs) in C. canephora cv. CL153 (CL153) found between severe water deficit
(SWD) vs. well-watered (WW) plants. Gene identification and protein name according to Coffea
canephora functional annotation retrieved from the Coffee Genome Hub (http://coffee-genome.org:
4 January 2020). DEGs were selected with DESeq2 and filtered by log2 fold change (FC) 6= 0 and
false discovery rate (FDR) < 0.01, Table S5: Full list of differentially expressed genes (DEGs) Coffea
arabica cv. Icatu (Icatu) found between moderate water deficit (MWD) vs. well-watered (WW)
plants. Gene identification and protein name according to Coffea canephora functional annotation
retrieved from the Coffee Genome Hub (http://coffee-genome.org: 4 January 2020). DEGs were
selected with DESeq2 and filtered by log2 fold change (FC) 6= 0 and false discovery rate (FDR) < 0.01,
Table S6: Full list of differentially expressed genes (DEGs) in Coffea arabica cv. Icatu (Icatu) found
between severe water deficit (SWD) vs. well-watered (WW) plants. Gene identification and protein
name according to Coffea canephora functional annotation retrieved from the Coffee Genome Hub
(http://coffee-genome.org: 4 January 2020). DEGs were selected with DESeq2 and filtered by log2
fold change (FC) 6= 0 and false discovery rate (FDR) < 0.01, Table S7: Regulation pattern of among
differentially expressed genes (DEGs) related to photosynthesis and biochemical processes in plants
of Coffea canephora cv. Conilon Clone CL153 (CL153) and C. arabica cv. Icatu (Icatu) submitted to
moderate water deficit (MWD) and severe water deficit (SWD) relative to the control, well-watered
(WW) plants. DEGs were selected if annotated with the direct or respective child Gene Ontology (GO)
terms: “antioxidant activity” (GO:0016209) and “response to oxidative stress” (GO:0006979) under
Antioxidant activity; “cellular respiration” (GO:0045333), “mitochondrion” (GO:0005739), “malate
dehydrogenase activity” (GO:0016615), “pyruvate kinase activity” (GO:0004743) under Cellular
respiration; “fatty acid metabolic process” (GO:0006631), LOX (GO:0004051, GO:0016702) under
Lipid metabolism; and “photosynthesis” (GO:0015979), “photosystem” (GO:0009521), “photosyn-
thetic electron transport chain” (GO:0009767), “photorespiration” (GO:0009853) and “chlorophyll
biosynthetic process” (GO:0015995) under Photosynthesis. Red represents up-regulated DEGs, and
blue represent down-regulated DEGs, Table S8: Regulation pattern of transcription factors (TFs)
found among differentially expressed genes (DEGs) in plants of Coffea canephora cv. Conilon Clone
CL153 (CL153) and C. arabica cv. Icatu (Icatu) submitted to either moderate water deficit (MWD) or
severe water deficit (SWD) in relation to well-watered (WW) plants. DEGs were selected if annotated
with the Gene Ontology (GO) term “DNA-binding transcription factor” (GO:0003700). Red represents
up-regulated DEGs, and blue represents down-regulated DEGs, Table S9: Regulation pattern among
differentially expressed genes (DEGs) related to catalytic activities, between plants of Coffea canephora
cv. Conilon Clone CL153 (CL153) and C. arabica cv. Icatu (Icatu) submitted to moderate water deficit
(MWD) and severe water deficit (SWD), relative to the control of well-watered (WW) plants. DEGs
were selected if annotated with the Gene Ontology (GO) terms “phosphatase activity” (GO:0016791)
and “protein kinase activity” (GO:0004672), or any of its respective child terms. Red rrepresents
up-regulated DEGs and, blue represents down-regulated DEGs.
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