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Abstract 
 

Bioinformatics aims to analyze and store complex biological datasets, which, due to the 

multidisciplinarity of the field, can be essential for finding meaning in biological systems, contributing 

to the modern life sciences knowledge. Transcriptomics is currently one of the areas if bioinformatics 

in greater expansion, namely through RNA sequencing (RNA-seq), which is an efficient transcriptome 

profiling approach. Its main application is the analysis of differentially expressed genes (DEGs), to 

assign biological meaning to specific tissues, environmental conditions, and other aspects. Reproductive 

strategies, resistance and stress responses can be evaluated through this technique, leading to a better 

understanding of the species fitness and survival. 

This thesis intended to detect and functionally annotate DEGs through the application of RNA-

seq pipelines. Moreover, since there’s still no gold standard for its best practices, this work mostly aimed 

to find the best suited tools and methods for each data type, such as length, depth and replicates, 

according to the research goals. Furthermore, it established a better understanding of the different 

expression profiles of species from three different genera, namely Casuarina, Coffea and Limonium. In 

general, the RNA-seq workflow was performed as follows: quality analysis, assembly (for non-model 

species), alignment, quantification, differential expression, and functional annotation. Since this project 

was developed as four separated analyses, each step and respective tools were evaluated according to 

each dataset features. The results of these analyses break the path for further studies and integration with 

other omics, which can help unravel relevant mechanism and pathways of the studied species. 

During the work of this thesis, a large set of scripts were developed to speed up and automatize 

the analysis, using Python and R languages, which have been made publicly available and can be applied 

by other users that work on similar studies. 
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Resumo 
 

A bioinformática é uma área relevante e atual das ciências da vida que visa desenvolver 

ferramentas para analisar e armazenar conjuntos grandes e complexos de dados biológicos. Graças à sua 

multidisciplinaridade, englobando áreas como a biologia, a matemática, a estatística e as ciências 

computacionais, esta pode ser essencial na descoberta do significado de sistemas biológicos, 

contribuindo para o desenvolvimento do conhecimento moderno da biologia e da medicina. A 

transcriptómica é uma das áreas da bioinformática em maior expansão e desenvolvimento na atualidade, 

nomeadamente através das tecnologias de sequenciamento de RNA (RNA-seq). Este método 

caracteriza-se por ser uma abordagem eficiente na criação de perfis transcriptómicos, cuja principal 

aplicação é a análise de genes diferencialmente expressos (DEGs), com o objetivo de atribuir significado 

biológico a tecidos específicos, genótipos distintos, diferentes condições ambientais, e outras 

propriedades. As estratégias reprodutivas, os mecanismos de resistência e as respostas ao stresse de uma 

determinada espécie, sistema, órgão ou tecido, podem ser avaliadas através desta técnica, através da 

pesquisa de diferenças significativas entre o objeto de estudo e o seu controlo, conduzindo 

potencialmente a um melhor conhecimento acerca da adaptação e sobrevivência das espécies. 

O trabalho desenvolvido nesta tese pretendeu detetar e anotar funcionalmente os genes com 

expressão significativamente diferencial, recorrendo à aplicação de pipelines de RNA-seq. 

Adicionalmente, uma vez que ainda não existe um gold standard para as melhores práticas a aplicar na 

utilização deste método, este projeto teve ainda como objetivo principal a seleção das ferramentas mais 

adequadas para cada tipo de dados, de acordo com os objetivos da investigação. Uma vez que o tipo de 

ferramentas e parâmetros usados têm uma grande influência sobre o sucesso da análise, os critérios de 

escolha da abordagem a utilizar reveste-se de grande importância numa boa análise bioinformática. Não 

obstante, os métodos de preparação das bibliotecas e processos laboratoriais que a envolvem podem 

influenciar os resultados, pelo que a sua otimização contribui também para a qualidade dos mesmos. 

Concretamente, este trabalho permitiu conhecer e compreender melhor os diferentes perfis de expressão 

de espécies de três géneros distintos, nomeadamente Casuarina, Coffea e Limonium, tendo em conta as 

condições de crescimento a que foram submetidos antes da colheita das amostras. Na primeiro análise, 

pretendeu-se estudar a expressão dos genes envolvidos na resistência à salinidade dos solos em 

Casuarina glauca para promover a proteção dos biomas nativos nos locais onde estas são invasoras. No 

segundo caso, na tentativa de estudar o impacto das alterações climáticas nas produções de café, 

analisou-se o efeito da elevação de [CO2] nos perfis de expressão de Coffea canephora e Coffea arabica, 

e ainda o efeito combinado da elevação de [CO2] e da temperatura. Finalmente, pretendeu-se estudar 

quais os mecanismos genéticos responsáveis pela substituição das estratégias de reprodução sexuadas 

pelas apomíticas, obrigatórias e facultativas, em diversas espécies de Limonium. 
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Em geral, o workflow de RNA-seq foi aplicado da seguinte forma: controlo de qualidade com 

corte e filtragem das reads; assemblagem de novo do transcriptoma, para as espécies não modelo; 

alinhamento das reads com o transcriptoma assemblado ou o genoma de referência, nos casos em que 

este está disponível; quantificação da expressão dos genes em cada amostra; análise estatística para 

deteção de DEGs; e anotação funcional dos DEGs identificados para identificação dos processos 

biológicos mais relevantes. Uma vez que este projeto foi desenvolvido em quatro análises separadas, 

cada etapa da pipeline e as suas respetivas ferramentas e métodos foram avaliados de acordo com as 

características de cada conjunto de dados, tendo em consideração especificidades como tipo, tamanho e 

profundidade das bibliotecas de RNA-seq, e o número de amostras e seus replicados. O controlo de 

qualidade foi maioritariamente conseguido através de filtragem e corte das reads de baixa qualidade, 

pequeno tamanho ou presença de contaminantes, nomeadamente adaptadores, usando os softwares 

FASTQC e Trimmomatic. A assemblagem de novo dos organismos não modelo, no caso Casuarina 

glauca e Limonium spp., foi realizada com o programa Trinity e permitiu não apenas a deteção e 

anotação funcional de DEGs, como a criação de transcriptomas que poderão ser usados em análises 

futuras. Uma das vantagens deste software é a integração com ferramentas importantes para a análise 

subsequente, nomeadamente para o alinhamento das reads e posterior quantificação dos perfis de 

expressão génica, as quais foram executadas com as ferramentas Bowtie2 e RSEM, respetivamente. No 

caso das amostras de café, para as quais existe um genoma de referência, o alinhamento das reads foi 

conseguido através da aplicação do software STAR, tendo sido os perfis de expressão genética traçados 

com a utilização do HTSeq. A análise de expressão diferencial propriamente dita foi determinada pela 

utilização individual ou combinada de um conjunto de pacotes de R especialmente adequados para o 

tipo de dados em questão, nomeadamente DESeq/DESeq2, edgeR. NOISeq. Estas ferramentas integram 

a possibilidade de normalização das contagens utilizando métodos otimizados para expressão 

diferencial, que têm em consideração fatores como os valores de contagem das reads, a profundidade 

de sequenciação e a composição de RNA, o que permite minimizar o viés intrinsecamente ligado ao 

tamanho relativo dos transcriptomas. Posteriormente, a anotação funcional e restantes análises foram 

realizadas de acordo com os objetivos específicos de cada investigação, recorrendo sempre a bases de 

dados como Gene Ontology, UniProtKB e KEGG. De modo geral, as ferramentas mais referenciadas na 

literatura estão otimizadas para DNA e apesar de já se terem desenvolvido algumas ferramentas 

especificamente focadas em RNA, ainda são necessários estudos de revisão para comparar a qualidades 

dos seus resultados com os métodos de referência, a fim de assegurar a manutenção ou melhoria da 

qualidade das análises. Os resultados deste trabalho permitiram a coautoria e publicação de dois artigos 

científicos sobre as estratégias de resistência ao stress ambiental das duas espécies de café estudadas, e 

a primeira autoria de dois artigos em vias de publicação sobre os mecanismos já referidos em Casuarina 

glauca e Limonium spp. 

No decorrer do trabalho desenvolvido nesta tese, além da investigação para a aplicação das 

ferramentas mais adequadas e atuais de acordo com o estado da arte, foi ainda criado um conjunto de 
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scripts com a finalidade de agilizar e automatizar as análises, utilizando as linguagens Python e R. Na 

sua globalidade, estes scripts têm a intenção de acelerar os processos mais morosos e, sobretudo, facilitar 

a aplicação recorrente de tarefas nas análises a diferentes conjuntos de dados, representado um 

investimento de tempo para análises futuras. Entre as referidas tarefas encontram-se a aplicação 

automatizada de ferramentas de controlo de qualidade, assemblagem, alinhamento, expressão 

diferencial e anotação funcional a múltiplos dados, a recolha automatizada de informações em bases de 

dados recorrendo a APIs, o rápido processamento de resultados de expressão diferencial e sua 

consequente graficagem, a manipulação de genomas de referência para uma facilitada anotação 

funcional e a automatização da análise de enriquecimento. Os scripts estão disponibilizados 

publicamente e poderão ser aplicados ou adaptados por utilizadores que trabalhem com dados e objetivos 

semelhantes. 

De modo global, os resultados deste projeto permitiram abrir caminho para futuros estudos e, 

especialmente, para a integração com outras ómicas, que poderão ajudar a desvendar os mecanismos e 

vias metabólicas mais relevantes das espécies estudadas, ou espécies relacionadas, tendo em conta os 

objetivos da investigação. Considerando a célebre evolução das tecnologias de sequenciação e dos 

softwares de análise, prevê-se que durante a próxima década o conhecimento acerca dos mecanismos 

genéticos que permitem a funcionalidade das células e seus os processos biológicos mais relevantes 

tenha um crescimento exponencial, permitindo um desenvolvimento sem precedentes da área das 

ciências da vida. 

 

 
Palavras-chave: RNA-seq, Casuarina, Coffea, Limonium, transcriptómica. 
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Figure 3.37. Total number of differentially expressed genes (DEGs) shared between two comparisons 

with opposite regulation, namely apomictic plants in S1 relative to sexual in S1 and apomictic plants in 

S2 relative to sexual in S3/S4 and relative to facultative apomictic plants in S3/S4. 
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Chapter 1 

1. Introduction 

Bioinformatics is a multidisciplinary field that combines biology, computational science, 

mathematics, statistics, and information engineering (Moore, 2007). Its main goal is to develop methods 

and software tools to analyze, interpret and find meaning for large and complex sets of biological data. 

Acting as the linguistics of genetics, it comprises the compilation, storage, retrieval, manipulation and 

modelling of data, through the development of algorithms and software. Specifically, bioinformatics 

can deal with the analysis of sequences of biological molecules, namely nucleotides (i.e., DNA and 

RNA) and amino acids, being particularly useful to compare different sequences within an organism or 

between organisms (Austin, 2014). Using in silico analyses of biological queries, it looks for patterns 

to explore and predict molecular functions, study evolutionary relationships, discover stress response 

mechanisms and unravel metabolic pathways. It is also used to develop databases that store relevant 

biological information, which can either be used to achieve new findings and to guarantee the 

reproducibility of work (Kulkarni et al., 2018). Data obtained by genome or transcriptome1 sequencing 

can be used to gain insight into biological processes and phylogenetic relationships, complementing 

proteome2 and metabolome3 research (Ulfenborg, 2019). Therefore, bioinformatics is the key to making 

the most out of these studies as an invaluable tool for attaining knowledge and import meaning to living 

systems, being essential in modern biology and medicine. 

 

1.1. RNA Sequencing 

The individuality of an organism is partially defined by its gene expression profile and its 

analysis, also known as transcriptomics, is one of the most commonly conducted procedures in 

molecular biology research (Chatterjee et al., 2018). Ribonucleic acid sequencing (RNA-seq) has 

revolutionized transcriptomics, since it offers remarkable opportunities to life sciences by shaping and 

refining knowledge to better comprehend cellular mechanisms (Ari, 2016). For many years, Sanger 

sequencing (Sanger) was the most widely used sequencing method and, although it’s still in use to 

 
1 Set of all RNA transcripts, including coding and non-coding, in an individual or a population of cells. 
2 Entire set of proteins that can be expressed by a genome, cell, tissue, or organism. 
3 Complete set of small-molecule chemicals found within a biological sample. 
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validate results and to cover areas not amendable to newer methods, it has been largely replaced by 

deep-sequencing technologies, especially for large-scale automated genome analyses (Shendure et al., 

2017). 

RNA sequencing is a major quantitative transcriptome profiling system, which enables the whole 

transcriptome to be surveyed in a remarkably high-throughput manner (Wang et al., 2009). Through the 

sequencing of complementary DNA (cDNA), it can produce millions of short nucleotide sequences (30-

400 nucleotides in size) also known as reads. Due to its efficiency, it became one of the most chosen 

approaches to study gene expression profiles, aiming to assign biological meaning to the differences 

found between different development stages, tissues, genotypes, physiological or environmental 

conditions (Kukurba & Montgomery, 2015). The interpretation of these changes can contribute to the 

understanding of development, physiology, stress tolerance, chemical signals, metabolic regulation, 

diseases and other key aspects that are essential to species fitness and survival. RNA-seq is particularly 

helpful in the analyses of poorly characterized species, since it doesn’t require prior knowledge of the 

genome or genomic features under investigation, nor a reference genome to attain useful transcriptomic 

information (Strickler et al., 2012). Also, it has very low background signal, which can be entirely 

absent, since DNA sequences can be unequivocally mapped to unique regions of the genome (Wang et 

al., 2009). Therefore, the development of this method represents a good opportunity to analyze not only 

the expression of protein-coding regions, but also noncoding RNA and de novo transcriptome assembly 

of new species or organisms (Chatterjee et al., 2018). 

Sequence-based methods such as RNA-seq directly determine the cDNA sequence, both mapping 

and quantifying transcriptomes, without the need of predefined transcripts/genes, and thus allowing the 

detection of novel transcripts and full sequencing of the whole transcriptome (Wang et al., 2009). 

However, like any other technology, RNA-seq also faces some challenges. Among its disadvantages, it 

lacks optimized and standardized analysis protocols and involves working with considerably larger 

files, requiring a more extensive and complex bioinformatics analysis, with longer analysis times and 

expensive computation infrastructures (Rao et al., 2019). However, there are multiple computational 

tools already available and under development, gradually improving these limitations. Also, since 

RNA-seq relies on reverse transcription and PCR amplification before sequencing, it can consequently 

induce some types of biases, including random hexamer priming bias, GC content bias and depletion 

of 3’ and 5’ ends of the transcripts, which impacts read nucleotide content and annotation, biasing the 

quantification of gene expression (Hansen et al., 2010; Roberts et al., 2011). Moreover, since RNA-seq 

involve cDNA synthesis, which requires several additional steps, there’s an increased signal 

degradation and chances of sample contamination (Ozsolak & Milos, 2011). 

Nevertheless, this methodology shows high levels of reproducibility for both technical and 

biological replicates, requiring less RNA sample since there’s no amplification step (Wang et al., 2009). 

Furthermore, RNA-seq has better accuracy and broader dynamic range, which helps to identify more 
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differentially expressed genes (DEGs) with higher fold-changes4 (Zhao et al., 2014). Due to its 

strengths, it is particularly useful in studies with splice variants and non-coding transcripts, enhancing 

stress related predictions, biological processes, phenomena comprehension and biomarker discovery 

(Rodríguez-Garcia et al. 2017). Also, since researchers avoid needing any preconceived notions about 

what to detect (via probes or primers), the overall bias is decreased (Rao et. Al, 2019). Furthermore, it 

has been demonstrated that RNA-seq is superior in low abundance transcripts detection, since it’s 

possible to increase sequence coverage depth to detect rare transcripts, single transcripts per cell or 

weakly expressed genes, also allowing the differentiation and identification of genetic variants, such as 

gene fusions, single nucleotide variants and indels5 (Zhao et al., 2014).  

The protocol of RNA-seq starts by isolating total RNA from the sample of interest, which is then 

purified to enrich for the specific type of RNA to be profiled (i.e., mRNA, microRNA) (Kukurba & 

Montgomery, 2015). Afterwards, the RNA sequencing library is prepared through the randomly 

fragmentation by hydrolysis or nebulization of long RNAs and reverse-transcription into multiple 

cDNA fragments via random hexamer or oligo-dT6 priming (Hrdlickova et al., 2017). Alternatively, 

fragmentation can be done after the creation of the cDNA library. RNA fragmentation produces a 

globally even read coverage with a decrease towards the transcript ends, whereas cDNA fragmentation 

results in an overall lower read coverage with an increase of read coverage on both ends (Kukurba & 

Montgomery, 2015). Sequencing adaptors are then added to each fragment, with or without an 

amplification step, generating short-reads from one (single-end) or both (paired-end) ends using one of 

the high-throughput (HTS) platforms, which size selects fragments suitable for sequencing and 

produces up to hundreds of millions of reads. Lastly, the resulting reads are aligned to a reference 

genome or transcriptome and categorized as exonic, junction or poly(A)7 end-reads, generating a base-

resolution expression profile for each gene (Figure 2) (Wang, 2009). RNA-seq has a number of different 

applications, namely in studies related to alternative gene spliced transcripts, post-transcriptional 

modifications, gene fusions, mutations, SNPs, small RNAs (i.e., snoRNA, miRNA, rRNA), ribosomal 

profiling and differential gene expression over time in one culture or between samples under control 

and experimental conditions. 

 

 
4 Ratio between expression levels of a gene 

5 Insertion or deletion of bases 
6 Synthetic single-stranded 18-mer oligonucleotide 
7 Polyadenylic acid tails present at 3′ 



 4 

 
Figure 1.1. Standard RNA-seq protocol (Wang et al., 2009). 

 
 

When designing RNA-seq experiments there are a few aspects to consider, namely library 

construction, sequencing depth and number of replicates. Library preparation methods vary depending 

on the type of RNA, strand specificity and type of reads. Using total RNA allows detection of non-

coding as well as mRNA, but may require additional enrichment steps (e.g., ribosomal RNA depletion) 

to allow the detection of low abundance transcripts (Kim et al., 2019). Poly(A) RNA enrichment can 

be used to purify mRNA and is useful in studies of eukaryotic organisms (Chung et al., 2018). Non-

stranded RNA-seq leads to the loss of orientation of the original RNA transcript, and without that intel 

it’s challenging to accurately determine gene expression from genes that have at least partially 

overlapping genomic loci but are transcribed from opposite strands (Zhao et al., 2015). Conversely, 

with strand-specific RNA-seq, also known as stranded RNA-seq, it’s possible to retain the information 

pertaining to strand origin which can be useful to accurately quantify gene expression levels for 

overlapping genes and to identify antisense or non-coding RNA. 

Sequencing can also involve two types of reads: single-end (SE), or paired-end (PE). SE 

sequencing involves sequencing cDNA fragments from only one end to the other, generating the 

sequence of base pairs (Corley et al., 2017). This solution delivers large volumes of high-quality data, 

rapidly and economically and it can be a good choice for some methods, such as small RNA-seq or 

chromatin immunoprecipitation sequencing (ChIP-seq), especially on a low budget (Illumina, 
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2017).  PE sequencing allows users to sequence both ends of the cDNA fragments, aligning the forward 

and reverse reads as read pairs and producing twice the number of reads for the same time and effort in 

library preparation (Corley et al., 2017). Overall, PE reads are more useful for alignment than for 

differential expression (DE) detection (Chhangawala et al., 2015). Since both ends of cDNA fragments 

are expected to map nearby on the transcriptome, this method deals more efficiently with multi-

mapping, solving most of these ambiguities. In addition, sequences aligned as read pairs enable more 

accurate read alignment and the detection of genomic rearrangements, providing high-quality 

alignments, even across DNA regions with repetitive sequences, gene fusions and novel transcripts 

(Rogers et al., 2014). As such, PE sequencing represents a better choice for de novo transcriptome 

assembly, indels discovery and isoform expression analysis, as well as to characterize poorly annotated 

transcriptomes, since it produces longer contigs by filling gaps in the consensus sequence (Deng et al., 

2014). Experiments designed to study splice variants, epigenetic modifications (methylation) and SNPs 

identification benefit from paired-end runs (Au et al., 2010).  

Sequencing depth, also known as library size, represents the number of reads sequenced for a 

given sample (Conesa et al., 2016). As the sample is sequenced to a deeper level, the reads are likely to 

cover a larger proportion of the genome/transcriptome, allowing more transcripts to be detected with 

more precise quantification. Ideal sequencing depth varies with the goals of the research and the 

complexity of the target transcriptome. Gene expression profiling experiments, that are looking for a 

quick snapshot of highly expressed genes may only need 5 to 25 million reads per sample. In these 

cases, researchers can pool multiple RNA-seq samples into one lane of a sequencing run, which allows 

for high multiplexing of samples (Kukurba & Montgomery, 2015). Experiments looking for a more 

global view of gene expression, and some information on alternative splicing, typically require 30 to 60 

million reads per sample. This range encompasses most published RNA-seq experiments for mRNA 

and whole transcriptome sequencing. However, when working with complex transcripts libraries, up to 

500 million reads may be required to cover full sequence diversity (Fu et al., 2014). Studies have shown 

that increasing depth can reduce quantification errors, within a limited range. An appropriately stable 

detection of coding genes can be reached at ~30 M reads per sample, since increases in already 

considerably deep depths may not contribute significantly to error minimization (Fonseca et al., 2014). 

Also, when held above 10 M reads per sample, increasing read depth seems to have a small effect on 

workflow performance, which is much more greatly impacted by the number of biological replicates, 

giving diminishing returns on power to detect DEG when this number is not increased (Baccarella et 

al., 2018). 

Read length depends on libraries’ application and final size. Simple gene expression studies can 

obtain decent results from short SE reads (e.g., 1 x 50 bp to 1 x 75 bp), while novel transcriptome 

assemblies, splice junction detection and annotation projects tend to benefit from longer, PE reads (e.g., 

2 x 75 bp or 2 x 100 bp) (Chhangawala et al., 2015). However, increasing both read length and library 

size can have larger impact in the detection of low-expressed genes on DE studies (Lamarre, 2018). 
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Also, since shorter reads (< 50 bp) have lower mapping quality due to large percentages of multiple 

alignments, it’s important to guarantee sufficient read length and sequencing depth to control technical 

noise and enable accurate gene identification and expression profiling (Rizzetto et al., 2017). 
The number of biological replicates in an RNA-seq experiment, which consists of different 

biological samples that are processed separately, depends on biological variability of the organisms 

under study (Conesa et al., 2016). These replicates are required to make inferences on the population, 

since without the estimation of variability within a group it’s impossible to estimate significant 

differences between groups and conclusions from such results should not be generalized (Manga et al., 

2016). As such, two biological replicates must be the minimum for inferential analysis. However, since 

statistical power increases with increasing numbers of replicates, it’s advisable to have at least three 

clean replicates, considering the chance that one or more replicates within a condition should be rejected 

(Schurch et al., 2016). Moreover, studies have shown a fairly greater proportional increase in the 

number of DEGs when moving from two to three replicates compared to going from three to four, 

suggesting three as a minimal ideal number of replicates (Manga et al., 2016). Furthermore, increases 

in the replicate number and library size seem to improve sensitivity and specificity, respectively, of 

Gene Ontology (GO) enrichment analysis, enhancing the underlying biological inferences (Lamarre et 

al., 2018). Overall, while PE reads and high coverage help to reconstruct lowly expressed transcripts, 

replicates are essential to resolve false-positive calls, as mapping artifacts or contaminations, at 

the low end of signal detection (Conesa et al., 2016). Nevertheless, due to budget limitations, 

transcriptomic studies aim for a suitable trade-off between the number of replicates, reads size and 

depth, to provide sufficient statistical confidence for efficient, powerful, yet cost-effective analysis 

(Manga et al., 2016). 

Being a HTS sequencing technique, RNA-seq poses a great demand for bioinformatics-based 

analysis of the generated data, since the analysis of the massive amount of data generated by this large‐

scale sequencing still faces many obstacles (Zhao et al., 2016). As tools have to balance between 

sensitivity, specificity and speed, no software can be best suited for all applications. As such, due to the 

huge number of tools available and the lack of a gold standard method to perform this kind of analysis, 

one of the main challenges is to make an informed choice of the tools to apply for each data type, 

organism and project goals (Chatterjee et al., 2018). Also, raw data can require terabytes of storage, 

which represents many challenges from simply moving the data off the machine, to the outmatched of 

common desktop computers by the volume of data from a single run (Costa et al., 2010). As such, the 

use of small clusters of computers is highly advantageous to reduce computational bottleneck. 

To obtain meaningful biological knowledge from raw sequencing data is essential to apply in 

silico modular bioinformatics pipelines, using specific software and biological references (Simoneau et 

al., 2021). The choice of each software and its respective parameters are typically made according to 

the sequencing protocol and the biological questions. Overall, to achieve such knowledge, the 

bioinformatic analysis pipeline of RNA-seq consists of five or six fundamental steps, depending on the 
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existence of a reference genome or transcriptome available for the reviewed organism: 1. raw data 

processing and quality control; 2. de novo transcriptome assembly (optional for non-model species 

without a reference genome, or when the available reference has low quality and is poorly annotated); 

3. mapping the reads to the transcriptome or reference genome; 4. gene, or isoform level quantification; 

5. statistic modeling for DE detection; 6. pathway and/or network level analyses to gain biological 

insight through systems biology approaches (Mutz et al. 2013; Conesa et al., 2016). 

 

1.2. Quality Analysis 

Millions to billions of raw short reads are the starting point of RNA‐seq computational data 

analyses, which are submitted to quality control (QC), before alignment and downstream analysis (Zhao 

et al., 2016). Quality control consists in the analysis of sequence quality, sequence content, sequence 

length distribution, duplication levels, overrepresented sequences and adaptor content. This control 

aims at detecting sequencing errors, contaminations, and PCR artifacts (Sathyanarayanan et al., 2019). 

In addition, QC also includes the analysis of read alignment, namely read uniformity and GC content, 

quantification, considering 3’ bias8, biotypes, and low-counts, and reproducibility, including 

correlation, principal component analysis, and batch effects (Conesa et al., 2016; Tarazona et al., 2015). 

RNA-seq is usually considered unbiased. However, fragmentation and library construction can 

introduce some biases into the analysis. The number of reads from each transcript is proportional to the 

number of cDNA fragments rather than the number of transcripts. Since longer transcripts are usually 

more fragmented, more reads will be assigned to them compared to shorter transcripts. Therefore, when 

performing DE analysis, DEGs are more likely to be enriched for longer than shorter transcripts, since 

the statistical power is higher for longer transcripts due to its larger counts (Ma et al., 2019). 

First, raw reads can be converted to FASTQ files, which contains not only sequence data, but 

also per base quality information about that same data, with four lines dedicated to each single sequence 

read, according to Table 1. Due to its simplicity, fastq format became widely used as a simple 

interchange file format (Cock et al., 2010). 
 
Table 1.1. Per base quality information about each single raw sequence read in FASTQ format. 

Line Description 
1  Character ‘@’ and information about the read 
2 The actual DNA/RNA sequence 
3 Character ‘+’ and sometimes the same info in line 1 
4 Quality scores encoded by a string of characters (same number of characters as line 2) 

 

 
8 Enrichment in the 3' end of polyadenylated mRNAs. 
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In order to quantify quality, encoding scales provide the mapping of quality scores to the quality 

encoding characters. Although there are different quality encoding scales, which differ by offset in the 

ASCII9 table, the most commonly used one is the Sanger format. There are several different ways to 

encode phred scores with ascii characters. The two most common are called Phred+33 and Phred+64, 

that take the phred quality score and add 33 or 64, respectively, then using the ascii character 

corresponding to the sum (figure A1). Since nowadays the Phred+33 is widely used, the Phred+64 is 

only found on older data that was sequenced several years ago. 

 

 
Figure 1.2. Mapping of quality scores (Phred+33) to the quality encoding characters, according to Sanger 
encoding scale. 

 
Each quality score represents the logarithmically based probability (Pe) that the corresponding 

nucleotide call is incorrect, which depends on how much signal was captured for the base incorporation. 

The scores generally range from 2 to 40 with higher scores indicating greater confidence in the call. 

Phred score is calculated as follows: 

!!"#$% =	−10 ∗ log&'(,() 
 
It’s common to filter out bases with Phred scores below 20, which represents a probability of 

1/100 incorrect base calling, although individual preferences according to the specificities of the dataset 

and the research goals may lead to the choice of other thresholds. Interpretation of Phred scores in terms 

of base calling probabilities and accuracy are summarized in table 2. 

 
Table 1.2. Interpretation of quality score values in probabilities of erroneous and accuracy base calling.  

Phred Quality Score Probability of incorrect base call Base call accuracy 
10 1 in 10 90% 
20 1 in 100 99% 
30 1 in 1000 99.9% 
40 1 in 10,000 99.99% 

 
To improve the quality of reads, there are a number of QC tools available. While some perform 

just a simple FASTQ quality assessment, others can automatically filter and trim low-quality data. 

Among the many available QC tools for HTS data, we can find FastQC (Andrews, 2010) and FastQ 

Screen (Wingett & Andrews, 2018), both from the same bioinformatics group at the Babraham Institute. 

FastQC provides a modular set of analyses that can be used to give an overview of whether data has 

any problems needed to be approached before doing further analysis (Babraham bioinformatics, 2010). 

 
9 American Standard Code for Information Interchange. 
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Its output includes an html file with easy-to-read graphical modules, flagging each one as passed 

(green), warning (yellow), or failure (red), divided in 11 to 12 modules: basic statistics, per base 

sequence quality, base tile sequence quality, per sequence quality score, per base sequence content, per 

sequence GC content, per base N content, sequence length distribution, sequence duplication levels, 

overrepresented sequences, adapter content and, if relevant, k-mer10 content. Although FastQC was 

designed for DNA studies, it can also be used to evaluate RNA data, taking into account that, in this 

case, some of the modules are expected to present warnings or failures. Since this tool doesn’t have the 

ability to change data, it can be necessary to subsequently submit it to another software capable of 

filtering and trimming as needed. FastQ Screen is a tool to validate the origin of genomic data, 

independently of the laboratory protocol followed (i.e., DNA, RNA-Seq, ChIP-Seq or Hi-C11), by 

quantifying the proportion of reads that map to a set of reference genomes (Wingett & Andrews, 2018). 

It can be used to determine the origin of samples from uncertain or multiple sources, to identify regions 

rich in low-complexity sequences, or as a quality measure to determine samples’ contamination. 

Furthermore, this tool is able to filter reads mapped or unmapped to specific genomes, allowing to 

remove contaminants, or to select specific reads according to the research goals. 

After analyzing reads integrity, data can be filtered and trimmed to improve quality, since it often 

needs to be mapped to a reference genome or transcriptome before downstream analysis. This process 

can be done by trimming low quality ends or entirely removing low quality reads. Overall, trimming 

has been widely used in HTS analyses, specifically prior to genome or transcriptome assembly, 

metagenome reconstruction, RNA-seq, epigenetic studies and comparative genomics (Del Fabbro et al., 

2013). One of the most popular trimming tools is Trimmomatic, which is a fast, multithreaded command 

line tool for Illumina SE and PE data (in fastq file format), developed to crop and filter reads. The 

available trimming steps are: ILLUMINACLIP, to cut adapters and other Illumina-specific sequences; 

SLIDINGWINDOW, to clip reads once the average quality within a selected window falls below a 

threshold; MAXINFO, which balances read length and error rate to maximize the value of each read; 

LEADING and TRAILING, to cut low-quality bases off the start or the end of the reads, respectively; 

CROP and HEADCROP, to cut reads to a specified length by removing bases from the end or the start 

of the reads, respectively; AVGQUAL, to drop reads with average quality below a threshold; 

TOPHRED33 and TOPHRED64, to convert quality scores to Phred-33 or Phred-64, respectively 

(Bolger et al., 2014). 

Although the main goal of this approach is to improve the quality of reads, aggressive trimming 

may lead to inconsistences across different genes, resulting in differential bias, which can have a large 

impact in RNA-seq-based gene expression estimates, especially with short-reads (Williams et al., 2016). 

Furthermore, since short-read sequence aligners take quality information into account and can 

 
10 Subsequences of length k contained within a biological sequence. 
11 Chromosome conformation capture method that performs high-throughput PE sequencing of fragments’ nucleotides. 
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effectively remove adapters via soft-clipping12, conservative trimming may be unnecessary (Liao & Shi, 

2020). As such, despite its popularity, trimming may not be required for both mapping and 

quantification of RNA-seq reads, when performed at gene level, or SNP-calling. Recent studies show 

that the accuracy of quantification or variant calling from untrimmed reads can be comparable or even 

slightly better than that from trimmed reads (Liao & Shi, 2020; Bush, 2020). Therefore, trimming is 

characterized as redundant and, according to the researchers, it can unnecessarily increase data time 

analysis and costs. Also, this method seems to have little impact on assembly completeness for coding 

genes, although these results depend strongly on experiment goals (Yang et al., 2019). Nevertheless, if 

reads have very low-quality ends, gentle trimming may contribute to improve analysis (Williams et al., 

2016). When extremely large numbers of reads are available, modest trimming may offer advantages, 

namely in older low-quality datasets, or in library preparation protocols that are susceptible to adapter 

contamination, allowing the recovery of reads without deteriorating expression estimation. One possible 

improvement may be the use of longer reads (e.g., 100-150 bp), so that reads remain long enough after 

trimming, or the addition of a minimum read length filter to shorter reads trimming, in order to minimize 

the introduction of unpredictable changes in expression estimates (Williams et al., 2016). Thus, to 

determine the best strategy, researchers should consider a trade-off between different trimming 

approaches according to downstream applications and to the available computational time (Yang et al., 

2019). 

1.3. Assembly 

After quality control, cleaned reads can be either aligned to a reference genome or transcriptome, 

possibly requiring and additional assembly step. Transcriptome reconstruction can be classified as 

reference-based, when a reference genome is available to guide de assembly, and de novo assembly, 

when a reference isn’t available or is incomplete (Marchant et al., 2016). Reference-based approaches 

are less computationally demanding than de novo methods, being suitable for detection of low 

abundance transcripts in organisms with reliable reference genomes (Benjamin, et al., 2014). Due to its 

high efficiency and sensitivity, it is also sometimes possible to use the reference from a closely related 

species. Conversely, de novo assemblers have the advantage of not requiring a reference, which allows 

the discovery of novel transcripts, although this approach need deeper sequencing (Hansen et al., 2012). 

This method can be used to reconstruct transcriptomes from a large number of cDNA fragments, 

without a priori knowledge of their correct sequence or order (Hölzer et al., 2019). Overall, de novo 

assemblies can generate accurate reference sequences, even for species with complex or polyploid 

genomes (Gutierrez-Gonzalez & Garvin, 2017). These assemblies may provide useful information 

about unknown or poorly annotated genomes, clarifying highly similar or repetitive regions and 

 
12 Masking of portions of reads that do not align to the genome from end to end. 
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identifying structural variants and complex rearrangements (e.g., deletions, inversions, or 

translocations). Nevertheless, due to the nature of transcriptomes, technical challenges and 

bioinformatics tasks, it can be difficult to correctly assemble sequences from some organisms. Features 

like alternatively spliced variants of the same gene, genomes with high degree of polymorphism, or 

high dynamic range of expression can make the reconstruction of transcripts a major challenge 

(Strickler et al. 2012; Kukurba and Montgomery 2015). Some studies suggest that combining reference-

based and de novo strategies, merging short-read and long-read technologies, provide better results to 

assemble fragmented transcripts and can improve genome reconstruction by integrating information of 

a related genome (Marchant et al., 2016; Lischer & Shimizu 2017). The ideal assembly would require 

high coverage, high read length, and very good read quality. Since no sequencing platform provides all 

these features, the assembly method should be chosen based on the particular assets of each dataset and 

project goals. Through the combination of different approaches, it’s possible to enhance the detection 

of a broader range of structural variant types and the accuracy of identification of complex 

rearrangements, yielding higher-quality assemblies. However, since there isn’t a gold standard method 

for all analysis, the best strategy highly depends on the research design, the available genomic data and 

computational resources (Benjamin, et al., 2014). 

Over the last years, different assemblers were developed to fit particular needs such as the 

assembly of smaller and simpler prokaryotic transcripts, or large and more complex eukaryotic 

transcriptomes, where alternative splicing has to be considered to reconstruct different isoforms (Hölzer 

& Marz, 2019). To perform de novo assembly, it’s fundamental to have a graph representation of 

relationships between reads, sharing common prefixes or suffixes. The most widely used assemblers 

are based either in de Bruijn graphs (DBG). Although less informative than other algorithms, it’s less 

computationally intensive, allowing the application of more sophisticated arguments, due to its simpler 

structure (Rizzi et al., 2019). Through de Bruijn graph assemblers, reads are broken into k-mers13, 

which are then used as nodes in the graph assembly. Later, nodes that overlap by some amount 

(generally, k=1) are connected by an edge and the assembler construct sequences based on the de Bruijn 

graph. There are a number of different good quality assemblers available based in DBG, among which 

is Trinity. This is a simple and intuitive software package for conducting efficient and robust de novo 

transcriptome assembly from Illumina RNA-seq data, which also supports genome-guided assembly, 

useful in non-model organisms (Grabherr et al., 2013). This package requires little to no parameter 

tuning and includes scripts for generating statistics to assess assembly quality, and for wrapping external 

tools to perform downstream analyses (Hölzer & Marz, 2019). Partitioning data into several 

independent DBG, preferably one per gene, it uses parallel computing to reconstruct transcripts, 

including alternatively spliced isoforms (Haas et al., 2013). Studies have demonstrated that Trinity is 

one of the highest effective assembly methods, generating consistently good assemblies and producing 

 
13 Nucleotide sequence (substring) of length k, contained within a biological sequence (read). 
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longer contigs (Hölzer & Marz, 2019). Since Trinity was developed for RNA-seq data, unlike 

assemblers written for genomic DNA, it produces one contig per isoform rather than per locus, and 

different transcripts are expected to have different coverage, due to their distinct expression levels (Haas 

et al., 2013). Trinity can process either strand-specific Illumina PE and non-strand-specific and single-

end SE libraries, and it also supports tools that take its output transcripts and test for DE, while 

accounting for both technical and biological sources of variation and correcting for multiple hypothesis 

testing (Figure 1.3). Despite Trinity’s effectiveness, without a reference genome, it may not be possible 

to completely understand the structural context for the transcript variations (e.g., number of skipped 

exons, or retained introns), if the experimental goals involve profiling expression at the isoform level. 

 

 
Figure 1.3. De novo transcriptome assembly of single-end (SE) and paired-end (PE) reads. 

 

After assembly, it’s important to assess its quality to ensure accurate mapping and quantification 

results for downstream analysis. Although Trinity can generate N50 statistics and counts of the number 

of contigs, these metrics should not be treated as good indicators by themselves. However, the more 

transcripts Trinity assembles, especially with just a few hundred bases long, the more likely contigs 

represent subsequences of actual genes (Adam & Weeks, 2020). Assemblies based upon the same read 

data can be evaluated with respect to the numbers of genes that are complete, fragmented, or missing 

from the assembly. One of the available tools to assess completeness is Benchmarking Universal Single-

Copy Orthologs (BUSCO). This tool wraps HMMER, which performs biosequence analysis using 

profile hidden Markov models, searching databases for sequence homology, and determining whether 

assembly contigs are orthologs14 with a particular BUSCO dataset entry (Simão et al., 2015).  

 

 

 
14 Genes in different species evolved from a common ancestral gene. 
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1.4. Alignment 

One of the fundamental tasks in RNA-seq data analysis is mapping large sets of high-throughput 

sequenced reads. Pairwise sequence alignment is a technique that intends to find identical or similar 

regions between two sequences, regardless of whether they are related by common descent (divergent) 

or not (convergent), to help give biological meaning to sequenced data and predict gene functions, e.g., 

through the detection of protein family, or repetitive elements across genomes (Baichoo & Ouzounis, 

2017). Using an appropriate aligner, reads can be mapped to either a genome or a transcriptome. 

Transcriptome-based methods employ unspliced aligners to map RNA-seq reads directly to the 

transcriptome and do not require considering splice junctions between exons. Conversely, spliced 

aligners that map reads to the genome can be used to help identify novel exons, isoforms, or transcribed 

regions of the genome, as well as cope with events like intron retention, which are more difficult to 

account for when using methods that align reads to the transcriptome (Srivastava et al., 2020). 

Frequently, sequenced reads are mapped and aligned to a reference genome. However, this technique 

is particularly prone to errors for RNA-seq data due to the presence of output reads spanning exon-exon 

splice junctions (Raplee et al., 2019). Moreover, RNA-seq datasets typically consist of millions to 

billions of relatively short sequence fragments of the original RNA transcripts, which are usually 

generated from large genome of many important species, making this task very computationally 

intensive (Dobin et al., 2013). Furthermore, transcripts are often spliced, requiring mapping to 

noncontiguous regions of the genome and thus creating a unique challenge for the RNA-seq mapping, 

both in terms of speed and accuracy. Since different aligners may have distinct mapping performances 

and the selection of the right tool is strongly related to each project goal. 

Overall, when conducting gene expression estimation, studies suggest applying aligners that 

produce high percentages of total aligned reads and aligned reads with at most one mismatch (Yang et 

al., 2015). Using this quality performance criterion, and although a single aligner program cannot 

universally be applied to all RNA-seq datasets, Spliced Transcripts Alignment to a Reference (STAR) 

is among the best tools available. STAR is a feature-rich software, with support for annotated and novel 

splice-junctions, chimeric and circular RNA, and fusion read detection. It is capable of running parallel 

threads on multicore systems with high productivity, making it fast (Dobin et al., 2013). Due to its 

moderate error rate, it allows highly accurate spliced reads alignment at ultrafast speed, providing 

scalability for emerging sequencing technologies (Dobin & Gingeras, 2015). STAR can generate 

various data files useful for downstream analyses such as transcript/gene expression quantification, 

differential gene expression, novel isoform reconstruction, and signal visualization. Moreover, STAR 

shows better alignment precision and sensitivity for both experimental and simulated data in 

comparison to other aligners (Dobin et al., 2013). 

Another suitable aligner is Bowtie2, which is an ultrafast and memory-efficient tool that aligns 

reads to reference sequences, claiming to combinate high speed, sensitivity and accuracy (Langmead & 
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Salzberg, 2012). It generates multiple alignments for each read, reporting the single best alignment per 

read. Bowtie2 supports gapped, local and paired-end alignment modes, indexing genomes with an FM 

Index15 to reduce its memory footprint. In local mode, this aligner can trim low-quality bases from 

either end of the reads to increase alignment score. Bowtie2 is particularly useful to align reads from 

50-100 bp to relatively long genomes (e.g., mammalian), being optimized for the read lengths and error 

modes yielded by typical Illumina sequencers. It can be used by itself, or as a resource for other 

software, as is the case of FastQ Screen. 

After mapping, it’s important to measure the quality of the alignment to ensure accurate 

downstream analysis. The percentage of mapped reads is a global indicator of the overall sequencing 

accuracy and of the presence of contaminating DNA (Conesa et al., 2016). Depending on the aligner 

and the species under investigation, 70 to 90 % of regular RNA-seq reads are expected to map onto the 

reference genome in a good quality alignment, with a significant fraction of reads mapping equally well 

to a limited number of identical regions, known as multi-mapping reads. If the same reads are mapped 

against the transcriptome, total mapping percentages are expected to be slightly lower due to the loss of 

reads correspondent to unannotated transcripts. The number of multi-mapping reads is expected to be 

significantly higher since several reads will map onto exons shared by different isoforms of the same 

gene (Conesa et al., 2016). Since alignment is the first step in RNA-seq cleaned data analysis, all 

subsequent analysis relies profoundly upon this initial step and can be positively or negatively 

influenced by it, especially to detect and identify differential gene expression (Raplee et al., 2019). 

However, some studies show that mapping methods may have minimal impact on the final DEGs 

analysis, if a good quality annotated reference genome is available. Although there are multiple genome 

annotations available, some are incomplete or inaccurate, which suggests that the choice of the genome 

annotation may have a relevant effect on downstream RNA-seq data analysis (Costa-Silva et al., 2017; 

Zhao & Zhang, 2016).  

1.5. Quantification 

After alignment, reads mapped to each gene are counted to determine the expression profile of 

the samples. Since transcript quantification is proportional to gene expression, in addition to many other 

factors, it is a prerequisite and a key step in the RNA-seq data analysis pipeline, and the accuracy of 

expression quantification can profoundly affect downstream analysis (Srivastava et al., 2020). There 

are two main approaches for transcript quantification, namely alignment-based and alignment-free 

tools. The first maps all the reads to a genome or transcriptome, and then counts the number of reads 

that map to an individual transcript or gene, while the second quantifies expression counting unique k-

mers in a sequencing library, without mapping to a reference (Babarinde et al., 2019). Unlike alignment-

 
15 Compressed self-index, that compresses data and indexes at the same time. 
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base, alignment-free approaches don’t require the alignment of every read before quantification, which 

makes them much faster. However, they are unsuitable to the quantification of repeat-derived RNA, 

since they only exploit unique splicing patterns to collect unique k-mers, being most suitable to 

transcript-level quantification and in genomes with decent transcript annotations. Alignment-free 

methods tend to perform poorly with lowly expressed transcripts or short RNA and can be misleading 

at gene-level quantifications, but in some cases, the loss of sensitive can be an acceptable trade-off for 

speed improvement (Babarinde et al., 2019). 

There are a number of quantification methods to choose from, among which are two of the most 

widely used alignment-based tools, namely RNA-seq by Expectation-Maximization (RSEM) and 

HTSeq. RSEM iteratively assigns reads to each transcript based on the probabilities of the reads being 

derived from each transcript and taking into account positional biases produced by library-generating 

protocols (Haas et al., 2013). This method can estimate expression at both gene and isoform-level and 

can be applied to single-end or paired-end reads, with or without a reference genome, being particularly 

useful for quantification with de novo transcriptome assemblies (Li & Dewey, 2011). Also, studies show 

that higher sequencing depth can increase the accuracy of RSEM quantification (Babarinde et al., 2019). 

By default, RSEM used parameters specifically chosen for RNA-seq quantification, and can be 

performed using Bowtie (default), Bowtie2, or STAR aligners. HTSEq is a quantification tool 

increasingly in used due to its speed, comparable to alignment-free methods, but with improved 

sensitivity. HTSeq uses a naive count-based approach for expression estimation and can be used either 

for strand-specific or non-stranded samples (Chandramohan et al., 2013). Unlike RSEM, HTSeq outputs 

only counts of reads aligned to genes but not the counts of reads involved in a particular isoform, i.e., 

the gene is considered to be a union of all exons. However, HTSeq is faster, easier to handle, less 

dependent on the choice of the mapper and, because of its computational efficiency, is great for 

preliminary data analysis or for quick assessment of relative expression estimates. 

In transcriptomic data analysis, quantification can be done either at transcript-level or gene-level, 

where the number of reads of different isoforms are counted individually, or grouped by gene, 

respectively. Gene-level estimation is considerably simpler and more stable than transcript-level, being 

better in terms of robustness, accuracy, statistical performance and interpretation (Soneson et al., 2015). 

Furthermore, it removes a lot of confounding information related to minor transcript isoforms 

(Babarinde et al., 2019). Overall, for RNA-seq analysis, gene-level quantification should be preferable 

unless there is a particular reason to consider isoforms, such as splicing factor mutation, which will 

specifically impact expression of particular transcripts rather than genes (Conesa et al., 2016). 

One setback of transcript-level quantification is that the measurement of DE can often 

overemphasize changes in the several minor transcripts of a gene, whilst its major transcript is relatively 

unchanged, making interpretation a challenge. On the other hand, analysis at the gene-level loses much 

of the complexity of transcript expression and is not easily suited to the analysis of particular types of 

non-coding genes, such as anti-sense or sense intronic transcripts, which are difficult to interpret in 
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gene-level quantification (Babarinde et al., 2019). Although the transitioning from transcripts to genes 

is substantially complex, some studies suggest that taking advantage of transcript-level abundance 

estimates when defining or analyzing gene-level abundances can lead to improved differential gene 

expression results compared to simple counting. Through an adequate combination of both approaches, 

it can be possible to increase sensitivity and accuracy of gene-level quantification (Yi et al., 2018). 

A typical quantification begins with the number of reads or k-mers that mapped to a transcript or 

gene. This number depends on the expression level, library size, percentage of aligned reads, transcript 

length, GC content, and other confounding parameters (e.g., batch effect16, or operator bias). To surpass 

these issues, quantification is typically followed by expression normalization (Babarinde et al., 2019). 

Accurate gene expression quantification requires not only accurate sequence read alignment, but also 

an adequate normalization method. Several metrics have been proposed for measuring transcript 

abundance levels based on RNA-seq data, normalizing for depth of sequencing and length of transcripts. 

Normalization makes the expression levels more comparable between and/or within samples and 

converts gene expression data from counts to a continuous scale. While normalization is essential for 

DE analyses, it is also necessary for exploratory data analysis, data visualization, and to explore or 

compare counts between or within samples (Khetani & Mistry, 2017). The main factors often 

considered during normalization are sequencing depth, to compare expression between samples, gene 

length, to compare expression between different genes within the same sample, and RNA composition, 

recommended for accurate comparison of expression between samples and particularly important when 

performing DE analyses (Evans et al., 2018; Robinson & Oshlack, 2010). RNA-seq can present some 

statistical issues for gene expression analysis, like large numbers of genes and few replicates; discrete, 

positive and skewed data; large dynamic range with presence of null counts and variable library size. 

Also, the detection of DEGs is inherently biased, since there is more power to detect DE of longer genes 

(Soneson & Delorenzi, 2013). As such, since DE analysis is mainly concerned with relative changes in 

expression levels between conditions rather than estimating absolute expression levels, normalization 

has a great impact on its results, assuming that DE and non-DE genes behave the same, balanced 

expression (Evans et al., 2018).  

Gene expression estimates can be evaluated by the number of genes falsely quantified and the 

number of genes with falsely estimated log2FC (Yang et al., 2015). Studies have shown that bellow an 

absolute log2FC, normalization performances tend to suffer, generating bias and higher variance values. 

As such, literature isn’t clear when reporting relative expression level units in RNA-seq data and the 

most fitting normalization method to use depends on which assumptions are valid for the biological 

experiment (Conesa et al., 2016). In the Counts Per Million (CPM) method, counts are scaled by the 

total number of reads, taking into account the sequencing depth. Although it can be used for gene count 

comparisons between replicates of the same sample group, having several advantages for samples where 

 
16 Data variability that is not due to the variable of interest. 
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RNA quality is low, it is unsuitable for within sample comparisons or DE analysis. Among the most 

frequently reported unit of expressions for RNA-seq data are RPKM, FPKM and TPM. These methods 

perform counts per length of transcript (kb) per million reads mapped, accounting for sequencing depth 

and gene length. The RPKM and FPKM methods are only recommend for gene count comparisons 

within samples, while TPM can also implement comparisons between samples of the same sample 

group. However, the order in which these methods normalize the read counts causes differences within 

samples that can add bias to the results, making them not very suitable for DE analysis (Evans et al., 

2018). Also, studies have shown that RPKM normalization is not able to control false positives in data 

having a small number of genes with very high read counts (Lin et al., 2016). Unlike these approaches, 

the DESeq, the Relative Log Expression (RLE) and the Trimmed Mean of Means (TMM) are designed 

to account for extreme differences in read count number, being able to compensate effectively for RNA-

seq data with a large dynamic range. Also, they can deal efficiently with the intrinsic bias resulting from 

the relative size of transcriptomes (Lin et al., 2016). The TMM uses a weighted trimmed mean of the 

log expression ratios between samples that accounts for sequencing depth, RNA composition and gene 

length. It is recommended for gene count comparisons between and within samples and for DE analysis. 

Although TMM seems to be very restrictive, showing low sensitivity, i.e., generating less numbers of 

DEGs, it has high specificity. Having the ability to detect DEGs while controlling false positives, it 

shows great classification performance (Li et al., 2020). DESeq normalization uses the ratio of each 

read count to the geometric mean of all read counts for a gene across all samples. The median of these 

ratios, called the size factor, is then used to scale samples (Evans et al., 2018). Doing so, these method 

accounts for sequencing depth and RNA composition, being suitable for gene count comparisons 

between samples and for DE analysis, but not for counts within samples. The Median Ratio 

normalization (MRN) is an alternative and similar method to the TMM, with the goal of being more 

robust. Read counts are divided by the total count of their sample and averaged across all samples in a 

condition for a given gene, producing an average count-normalized value for each gene and each 

condition. The original counts are then normalized by the median of the ratios of these values between 

conditions and their library size.  

1.6. Differential Expression 

Count tables resulting from RNA-seq data quantification are typically analyzed through the 

application of statistical methods to detect DEGs. Numerous methods have been developed specifically 

for RNA-seq, attempting to accurately quantify the abundance of transcripts or genes within different 

conditions and time points, and to correlate deviations in its abundance to genetic and environmental 

changes in order to comprehend genome function and adaptation (Fang et al., 2012). Parametric and 

nonparametric are two broad classifications of statistical procedures. They differ from nonparametric 

in data distribution assumption, biological replicates handling, ability to perform multi-group 
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comparisons and computational intensity. The use of nonparametric methods is a way to reduce the 

difficulty of modelling counts in some experiments, since without depending on underlying 

distributional assumptions, they can give reliable results on a vast variety of data sets. However, since 

parametric methods use the most powerful test statistic, being more efficient when the distributional 

assumption holds, even when the sample size is small, they are the most used in RNA-seq studies. 

Nevertheless, if the distribution is poorly approximated, the results may not be reliable (Li & Tibshirani, 

2013). Many of these methods are implemented in R/Bioconductor17 packages, namely the widely used 

and best performing parametric DESeq, DESeq2 and edgeR, and nonparametric NOISeq. 

DESeq fits a generalized linear model to estimate variance-mean dependence in count data, 

testing for DE based on the negative binomial distribution and a Likelihood Ratio Test (LRT). The core 

assumption of this method is that the mean is a good predictor of the variance, i.e., that genes with 

similar expression levels also share similar variance across replicates, and thus it estimates a function 

for each condition that allows to predict the variance from the mean. DESeq incorporates information 

from all the genes in a set of samples to circumvent small sample sizes and it normalizes data through 

its intrinsic method, already discussed above. Assuming that most genes behave the same within 

replicates as across conditions, it allows testing on samples without replicates, estimating variance by 

treating all samples as if they were replicates of the same condition. Although statistical significance 

can’t be truly credited without replicates, it is anticipated that the estimated variance should not be 

affected too much by the influence of DEGs. In that case, it’s assumed that the dispersion estimated by 

DESeq will be too high, so that the test will err to the side of being too conservative, i.e., high false 

negative rate (FNR) and low false positive rate (FPR) (Anders and Huber, 2010). Thus, the results from 

such analysis are expected to be more incomplete than incorrect, which can be particularly useful for 

exploratory analysis. 

DESeq2 also uses a negative binomial distribution to model read counts (Ren & Kuan, 2020). 

First, it normalizes the counts of each gene employing a generalized linear model that uses the variance 

of all the genes to improve the variance estimated for each individual gene (MRN). Then it applies an 

empirical Bayes shrinkage to detect and correct for dispersion and high variance log2 fold change 

(log2FC) estimates, which represents the ratio of the expression of the two samples. Unlike DESeq, it 

doesn’t allow the absence of replicates and it can find the value of the parameter that makes the 

likelihood largest, also known as maximum likelihood estimation (MLE) (Love et al., 2014). 

The edgeR method is a Poisson super dispersion model that uses weighted likelihood methods to 

implement a flexible empirical Bayes approach to allow gene-specific variation estimates. Its algorithm 

is also based on a negative binomial distribution, with variance and mean bound by local regression, 

and it uses as default method of normalization the TMM. However, there are alternative normalization 

methods available in edgeR to account for data that fail to conform to a negative binomial distribution, 

 
17 Free, open source and open development software project for the analysis and comprehension of genomic data, based primarily on statistical 
R programming language. 
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which is assumed with TMM. According to studies, although poisson distributions can correctly 

characterize data from technical replicates, negative binomial models are more appropriate to describe 

data from biological replicates, which have much larger variance, being a suitable choice for RNA-seq 

data analysis (Li & Tibshirani, 2013). Like DESeq, edgeR can be applied even with very few or no 

replicates (Chen et al., 2014), in which case the dispersion value has to be fixed manually. Although 

both DESeq and edgeR incorporate information sharing in the dispersion estimation, the way that this 

information sharing is done accounts for the main difference between the two methods. Overall, DESeq 

tends to be more conservative than edgeR, showing better control of false positive rate, but edgeR is 

more suitable for experiments with fewer than 12 replicates (Schurch et al., 2015). 

Using a very different approach, NOISeq is an exploratory analysis tool that tests for DE between 

two experimental conditions with no parametric assumptions, that can simulate technical replicates. 

This method relies on the premise that read counts follows a multinomial distribution, where 

probabilities for each feature are the probability of a read to map to it (Tarazona et al., 2011). Adaptative 

to the data, NOISeq empirically models the noise in the counting data and allows data analysis without 

replication. In this method, genes are differentially expressed if the ratio of log2 between two conditions 

and the value of the difference between the two corresponding conditions are likely to be higher than a 

noise. The noise distribution is obtained by comparing all pairs of repetitions within the same condition. 

Both edgeR and DESeq2 require raw read counts in a data matrix, which perform the same kind 

of normalization to account for differences in sequencing depth, and low count variability. Also, both 

tools assume that RNA-seq data display overdispersion with variance greater than expected for random 

sampling and to a negative binomial distribution, employing Bayesian methods to fit gene expression 

counts into it. On the other hand, NOIseq and DESeq2 presents the highest true positive rate (TPR), 

accuracy and specificity and are suitable for experiments with a large number of samples and an 

annotated genome. However, NOIseq can obtain a low amount of unidentified DEGs, independently of 

the mapper previously used, since DE analysis is more influenced by the methodology of DEG 

identification than the adopted methodology of mapping or quantification of reads. In general, although 

some methods perform better than others and the results also depend on the nature of data and the 

experiment goals, the combination of different methods seems to produce more suitable results, 

presenting better balance than individual solutions (Costa-Silva et al., 2017). 

The output of RNA-seq DE analysis is a list of significant DEGs. The significance of these DEGs 

can be determined through a filter of corrected p-value and/or log2FC, depending on the type of data 

and the experiment goals. The False Discovery Rate (FDR) is a statistical approach that is typically 

applied in RNA-seq studies, to correct for multiple comparisons in multiple hypothesis testing. It is 

defined as the expected proportion of false discoveries, i.e., incorrectly rejected null hypothesis (Li et 

al., 2012). To filter significant DEGs, FDR is usually ranged between 0.01 to 0.1. The log2FC filter 

should be used more carefully, since it only accounts for the size of the effect of DE. For some genes, 

subtle differences in expression can have a substantial impact in biological pathways, while for others, 
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only great changes can effectively cause real impacts. Moreover, log2FC is sensitive to lowly-expressed 

genes, where the variability is high and thus the value might not be accurate. However, for cases where 

a statistical significance can be attributed and/or when in the presence of a huge number of DEGs, a 

log2FC threshold can be useful to narrow down the search to genes of interest (Chen et al., 2016).	

1.7. Functional Analysis 

After DE analysis, it’s important to interpret the results using functional analysis tools to gain 

biological insights on the DEGs lists. These tools span a wide variety of approaches and can be roughly 

categorized in three main classes: over-representation analysis, functional class scoring and pathway 

topology. These analyses are highly dependent on biological information from multiple studies, like 

gene and protein annotations, or pathway networks. Since the goal of functional analysis is to offer 

biological knowledge, it’s necessary to analyze results in the context of experimental hypothesis, using 

tools to validate experimental results and to make hypotheses, suggesting genes/pathways that may be 

involved with the condition of interest. However, these results shouldn’t be used to make definite 

conclusions about the pathways, since those conclusions require experimental validation. 

1.7.1. Databases 

Recent advances in HTS technologies coupled with decreases in sequencing costs have resulted 

in the collection of large volumes of RNA-seq data from several organisms. These data are usually 

deposited in online repositories in formats that are text and/or table-based (Robinson et al., 2018). To 

store more complex data, there are also several biological databases available. These are typically huge, 

organized bodies of exception-ridden, vast and incomplete biological information, generally associated 

with software developed to quickly update, query, and retrieve components of the stored data (Rhee & 

Crosby, 2005). Moreover, databases are also useful to provide web application programming interfaces 

(APIs) to automatically exchange and integrate data from multiple databases (Zou et al., 2015). Several 

databases have been designed and interpreted to ensure unambiguous results (Rhee & Crosby, 2005). 

A range of information can be retrieved by using biological databases, namely genomic sequences, 

metabolic interactions, functional relationships, protein families and homologous. Databases can be 

classified as primary, containing only sequences or structural information, or secondary, which content 

derives from the analysis or treatment of primary data (Zou et al., 2015). 

The National Center for Biotechnology Information (NCBI) provides access to most biomedical 

and genomic information through its powerful and large servers, contributing to advances in science 

and health. Among the numerous resources of NCBI, the Sequence Read Archive (SRA) constitutes the 

largest publicly available repository of high throughput sequencing data, from all branches of life as 

well as metagenomic and environmental surveys. This stores raw sequencing data and alignment 
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information to enhance reproducibility and facilitate new discoveries through data analysis (Leinonen 

et al., 2011). 

The UniProt Knowledgebase (UniProtKB) is one of the many available databases and represent 

the main hub for the compilation of accurate, consistent and rich proteins’ functional annotations. 

Mainly, this database captures amino acid sequences, protein names or descriptions, taxonomic data 

and citation info, adding as much annotation information as possible to each entry, like biological 

ontologies, classifications, cross-references and annotations’ quality (i.e., experimental or 

computational evidence). The UniProtKB consists of two sections namely UniProtKB/Swiss-Prot and 

UniProtKB/TrEMBL. The first contains high-quality, non-redundant, manually-annotated records 

extracted from literature and curator-evaluated computational analysis. The second comprises 

computationally analyzed records that provides high annotation coverage of the proteome, awaiting full 

manual annotation (The UniProt Consortium, 2021). 

The PubMed Central (PMC) is a free full-text archive of biomedical and life sciences journal 

literature at the U.S. National Institute of Health’s/National Library of Medicine (NIH/NLM) that 

comprises over 32 million citations. Since it’s beyond the ability of anyone to comprehend information 

in such amounts without computational help, there is an increasing need of relying on the creation of 

controlled structured vocabularies such as ontologies (Hill et al., 2008). These systems allow 

experimental data to constitute a formal, structured representation of the reality, captured by the 

underlying biological science. Gene Ontology (GO) is a bio-ontology that describes gene products with 

three independent categories: biological process, cellular component and molecular function, which 

may produce multiple GO terms assigned to one query sequence (Ashburner et al., 2000). As such, a 

GO annotation represents an association between a gene product type and that product’s function, what 

biological processes it contributes to, and where in the cell it is capable of functioning. The Gene 

Ontology Annotation Database (GOA) stores the corpus of all GO terms’ annotations to UniProtKB 

entries, being accessible through the QuickGO interface, which is a web-based tool for searching and 

view data from the GOA database (Binns et al. 2009). 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a prominent reference knowledge 

base resource that integrates and interprets genomic, chemical, health and systemic functional 

information for understanding high-level functions and utilities of the biological system. Large-scale 

molecular datasets generated by sequencing and other high-throughput experimental technologies are 

integrated on molecular wiring diagrams of interaction, reaction and relation networks, representing 

systemic functions of the cell and the organism (Kanehisa & Goto, 2000). Wikipathways, another 

database of biological pathways, is known for its collaborative nature and open science approaches, 

maintained by and for the scientific community. It presents a model for pathway databases that enhances 

and complements other platforms, such as KEGG, paving the way towards more sustainable, 

community-driven biology databases, yielding to provide intuitive views of the myriad of interactions 

underlying biological processes (Martens et al., 2021). 
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The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) is a database of known 

and predicted protein-protein interactions (PPIs), that includes direct (physical) and indirect (functional) 

associations, using computational prediction, knowledge transfer between organisms, and combining 

interactions from other primary databases (Jensen et al., 2009). PPI networks are a vital element for 

system-level comprehension of cellular machinery and can perform tangible, practical purposes such as 

filtering and assessing high-throughput functional genomics data to provide intuitive visual scaffolds 

for annotating the structural, functional, and evolutionary properties of proteins. 

1.7.2. Functional Annotation 

The Basic Local Alignment Search Tool (BLAST) is a software specialized in finding regions of 

similarity between biological sequences. Through the comparison of nucleotide or amino acid 

sequences to sequence databases it calculates the statistical significance of the resemblance, above a 

certain threshold (Boratyn et al., 2013). The BLAST algorithm is divided in three main functions: 

blastn, which searches nucleotide databases using a nucleotide query; blastp, which searches protein 

databases using protein queries; and blastx, which searched protein databases using a translated 

nucleotide query. This program also includes tblastn and tblastx tools, which searches translated 

nucleotide databases using protein and translated nucleotide queries, respectively. The blastx tool is 

particularly useful in RNA-seq studies, since it allows the identification of potential protein products 

encoded by transcripts, allowing transcriptome annotation of non-model organisms. 

When working with a model organism, annotation can be made by running a BLAST search 

against the organism’s reference protein dataset. For non-model organisms, because of the absence of 

a specific reference for comparison, the analysis has to be done against the proteins of a closely related 

species (when available), or a dataset containing all known proteins. Lastly, the percentage of best 

aligning targets can be recovered to select the best hit for each transcript. To do so, blastx can search 

multiple databases, which can be select according to the research goals. 

 
Table 1.3. Blast databases (*excluding those in PAT, TSA and env_nr). 

Protein Database Content 
Non-redundant protein sequences (nr) Non-redundant sequences from GenBank + RefSeq + PDB + SwissProt + PIR + 

PRF* 
RefSeq Select Proteins (refseq_select) Representative transcripts for protein-coding genes from RefSeq 
Reference Proteins (refseq_protein) All protein sequences from RefSeq 
Model Organisms (landmark) Proteomes from representative genomes spanning a wide taxonomic range 
UniProtKB/Swiss-Prot (swissprot) UniprotKB/SwissProt sequences (last major release) 
Patented protein sequences (pataa) Patented division of GenBank 
Protein DataBank proteins (pdb) Protein sequences with 3D structure records 
Metagenomic proteins (env_nr) Protein sequences translated from the CDS annotation of the metagenomic 

nucleotide sequences 
Transcriptome Shotgun Assembly 
Proteins (tsa_nr) 

Protein sequences translated from CDS’s annotated on transcriptome shotgun 
assemblies 



 23 

Although the default nr database is comprehensive and frequently updated, considering its huge 

size, it requires a significantly high computational power and storage, and a complete search can be 

overly time-consuming. In most cases, there are better choices of database, such as a subset of 

GenBank for the organism of interest or a UniProtKB complete proteome. 

1.7.3. Enrichment analysis 

A common feature of HTS technologies, alongside other bioinformatics analysis, is the output of 

lists with hundreds to thousands of genes. However, to gain greater biological insight on DEGs, the 

interpretation of each gene individually is, evidently, not practical. As such, several tools have been 

developed to search for sets of genes with particular interest, which typically interact in a common 

biological pathway. Consistent perturbations over such gene sets frequently suggest mechanistic 

changes. One of the ways to identify these interactions is through enrichment analysis, which compare 

a given set of genes to a background, that can be a whole reference genome, or the only genes expressed 

by the organism in study. In practice, these background gene sets are compiled from gene and pathway 

annotation databases such as GO, KEGG, or Wikipathways (Simillion et al., 2017). 

Enrichment analysis approaches search for sets of genes that are significantly over-represented 

in a given list, compared to a background set of genes. Many tools can perform Over-Representation 

Analysis by querying biological databases that typically categorize genes into groups (gene sets) based 

on shared functions, involvement in pathways, presence in specific cellular locations, or other common 

categorizations. Known genes are organized into categories based on its functional annotation. The 

proportion of DEGs associated with a specific category is compared to the proportion of total genes 

associated with the same category in the background set. Over-represented categories are, then, 

determined based on the probability of having a significantly higher proportion of DEGs in a specific 

category than was expected for the organism in investigation. 

A Gene Set Enrichment Analysis (GSEA) is a particular type of Over-Represented Analysis 

(ORA) that takes into account the DE values obtained from the DE analysis, ranking genes with 

decreasing log2FC. An ORA simply uses a hypergeometric test to find enriched categories among all 

DEGs, regardless its expression regulation, although it can accept while either flat or ordered gene lists 

by decreasing or Wikipathways. This tool includes an ordered query option, which is useful for RNA-

seq data when ranking DEGs by log2FC. Using this option, g:Profiler performs incremental enrichment 

analysis with increasingly larger numbers of genes starting from the top of the list. This approach 

identifies functional terms that are associate to the most significant changes, as well as broader terms 

that characterize the gene set as a whole. importance. Conversely, a GSEA uses a permutations 

algorithm, with the possibility to rank categories based on FDR and then selects the top N most 

significant genes from positive and negative related categories, separately. One of the tools that can 

perform GSEA is the WEB-based GEne SeT AnaLysis Toolkit (WebGestalt), which is a popular suite 
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of comprehensive, powerful, flexible and interactive tools for functional enrichment analysis in various 

biological contexts. Currently, it supports 12 organisms, 342 gene identifiers and 155 175 functional 

categories, as well as user-uploaded functional databases. Also, to facilitate comprehension of the 

enrichment results, it includes methods to reduce redundancy between enriched gene sets, improving 

the visualization of results. ORA can be performed in several tools, among which is g:Profiler. This is 

a public web server that has a simple user-friendly web interface with powerful visualizations, currently 

available for more than 400 species, including mammals, plants, fungi, insects from Ensembl and 

Ensembl Genomes. This software contains a function specifically developed for ORA, the g:GOSt, 

which performs functional profiling of gene lists using various kinds of biological evidence, such as 

GO terms, KEGG pathways. 

The selection of an inappropriate background set can heavily influence an enrichment protocol, 

resulting in concepts and genes appearing to be more significant than they actually are, or appearing 

significant (i.e., biased) when the bias is actually due to methodology rather than biology. As such, it is 

imperative to think carefully about the set from which an interesting subset of genes was taken. A good 

rule of thumb for background selection is only to include those genes or proteins that have a chance of 

making it into the interesting set and exclude all others. Most use all genes present in the input dataset 

or even all genes annotated on the genome as the background. Doing so, however, introduces a 

particular type of bias into the results, which we refer to as sample source bias. Sample source bias 

occurs when the gene sets returned by GSEA describe the sample rather than the condition being tested. 

Carefully selecting the background set can eliminate this bias. Although it is arguably an important 

consideration, surprisingly very few authors have addressed the issue of background selection.  

1.7.4. Other analysis 

There are numerous other analysis that can be performed using RNA-seq data, according to the 

type of data, organism, experiments’ goals, computational power and time available. Gene-gene and 

protein-protein interactions (GGIs/PPIs) are two kind of analysis that can help unveil biological 

processes of the cells. GGI is the modification of the effect of one gene caused by another gene or 

several other genes (Jiang et al., 2013). GGIs software can report on how and which genes work 

together, providing a powerful tool for systematically defining gene function and pathways. 

Transcription of any given eukaryotic gene can be regulated by as many as over a hundred different 

proteins that act through protein-protein and protein-DNA18 interactions (Cole et al., 2017). On the other 

hand, PPIs are high specificity physical contacts established between two or more proteins as a result 

of biochemical events involving electrostatic forces, hydrogen bonding and the hydrophobic effect 

(Tripathi et al., 2019). These contacts induce a variety of interactions and associations among the 

 
18 Essential components of all biological systems, fundamental to almost all biological processes. 
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proteins, but it’s important to keep in mind that proteins that share a functional contact do not 

necessarily interact directly with each other (Rao et al., 2014; De Las Rivas & Fontanillo, 2010). PPIs 

are fundamental to the formation of macromolecular structures and enzymatic complexes that are the 

basis of nearly every biological process ranging from signal transduction and cellular transport to 

catalyzing metabolic reactions, developmental control, activating or inhibiting other proteins and 

biomolecular synthesis (Tripathi et al., 2019). For these reasons, finding PPIs is becoming one major 

objective of system biology. PPIs can be classified in many different ways, according to their structural 

and functional features, namely interaction surface (homo or heterooligomeric), stability (obligate or 

nonobligate) and persistence (transient or permanent). A single PPI may be classified by a combination 

of multiple of these features (Rao et al., 2014). 

The ShinyGO (Xijin et al. 2019) is an intuitive, graphical web application that can contribute to 

gain insights from gene sets, such as a list of DEGs. This method is based on a hypergeometric 

distribution, followed by FDR correction, and can perform a set of functional analysis, including 

enrichment analysis, hierarchical clustering tree and networks, and retrieving PPIs from the STRING 

database (Ge et al., 2020). 

Another interesting approach is the analysis of clusters of potentially co-expressed genes. Co-

expression clustering aims to group genes together based on similar expression profiles, which may 

reflect functional similarity, and is typically used to detect genes in novel pathways or networks. By 

taking an entire expression matrix and computing pairwise co-expression values, it implements 

comparisons across conditions or time-points, making possible the identification of biologically 

relevant pathways and networks. Exploring the topology of the generated networks, it can be possible 

to make inferences on gene co-regulation. One useful tool for study gene co-expression is Clust, which 

is a fully automated command line tool that performs optimized consensus clustering of well-correlated 

genes in heterogeneous datasets, helping to understand expression patterns of the DEGs. This tool can 

simultaneously cluster multiple datasets, enabling the combination of large quantities of public 

expression data for novel comparative analysis (Abu-Jamous & Kelly, 2018).  

1.8.  Organisms 

1.8.1.  Casuarina glauca 

Casuarina glauca, commonly known as scaly oak, is a fast-growing multipurpose actinorhizal 

tree of the Casuarinaceae family in the order Fagales. Native to Australia, C. glauca is highly resilient 

to extreme environmental conditions, such as salinity and drought, having the ability of grow in difficult 

sites and colonize eroded lands, improving their fertility. As a result, this tree is increasingly used for 

reforestation and renovation of degraded lands in tropical and subtropical areas, such as China and 

Egypt (Zhong et al., 2013). This plant can establish root-nodule symbiosis with N2-fixing bacteria of 
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the genus Frankia, where N2 fixation occurs through the action of prokaryotic nitrogenase, which helps 

improve phosphorous and water uptake by the root system, limiting de necessity of chemical fertilizers. 

The increased capability of actinorhizal plants to cope with extreme environmental conditions has been 

attributed to their ability to establish this symbiose. However, studies suggests that increased N 

nutrition, photosynthesis potential and machinery, proline accumulation as well as the enhancement of 

the antioxidant status that maintains cellular homeostasis are important factors responsible for salt 

tolerance (Ngom et al., 2016; Graça et al., 2020).  As such, the analysis of the transcriptome of different 

samples of C. glauca under various salt concentrations, can unravel the molecular mechanisms 

underlying stress tolerance and minimize the impact of its invasive behavior in native biomes, 

contributing, in complement to previous studies in this species, to halophyte research (Duro et al., 2016; 

Graça et al., 2019). 

1.8.2. Coffea canephora and Coffea arabica 

The coffee tree is a shrub that belongs to the Rubiaceae family. Coffee is produced in about 80 

countries of the tropical region, where it plays a crucial economic and social role (Ramalho et al., 2014). 

With an annual provision of around 9M tons of green beans and the involvement of 100-125M people 

in its extensive chain of value, coffee is one of the most important agricultural products worldwide. 

Although Coffea genus enclosed at least 125 species, only two dominate coffee market: Coffea arabica 

L. (Arabica coffee) and Coffea canephora Pierre ex A. Froehner (Robusta coffee). Together, they are 

responsible for roughly 99% of the world coffee production, with the former generating around 60-65% 

(DaMatta et al., 2006). The origin of C. arabica is apparently related to a single natural polyploidization 

event, occurred between the diploids C. canephora and Coffea eugenioides in a very recent evolutionary 

time (<50,000 years ago), on the plateaus of Central Ethiopia. Since the two parental species are closely 

related, the genetic variation between the allotetraploid C. arabica and its diploid progenitors is quite 

small, which is a concern for the sustainability of the crop in the climate change’s context (Scalabrin et 

al., 2020). 

Despite those genetic similarities, the two species present different behaviors and adaptations. 

Arabica coffee grows best at high altitude and is a more expensive bean to grow, due to its longer 

maturation period and its selective harvesting, resulting in a relatively low yield. On the other hand, 

Robusta coffee grows well at lower altitudes, which suggests that it is better suited for extreme 

conditions, such as higher temperatures and consequent potential fungal contamination. Additionally, 

Robusta has a much higher caffeine content than Arabica, which is said to offer the plant natural 

insecticidal properties, adding to the sturdy nature of the variety and helping make it better able to 

withstand the environmental stresses present at low altitudes. Studies suggest that Arabica has evolved 

to contain lower levels of caffeine, since its bitterness as a defense against insects is not imperative on 

higher ground.  Understanding the effect of extreme temperatures and elevated air CO2 is crucial for 
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mitigating the impacts of the coffee industry (Simpson, 2017). As such, the analysis of significant 

changes in the transcriptomic responses of C. arabica and C. canephora caused by climate changes can 

reveal the main biological processes involved in these plant’s resistance to abiotic stress responses, 

improving yields and its underlying economy. 

1.8.3.  Limonium spp. 

The cosmopolitan species-rich genus Limonium from the Plumbaginaceae family comprises 

annual and perennial herbs, shrubs and lianas, often adapted to extreme coastal environments, which 

has both sexual and apomictic (asexual seed formation) modes of reproduction (Kubitzki, 1993). The 

Plumbaginaceae family is distributed across several parts of the world having preference for cold, arid, 

saline costal habitats and saline steppes (halophytes). In mainland Portugal there are ca. 17 species, 

among which are L. multiflorum, L. ovalifolium, L. nydeggeri and L. dodartii (Costa, 1998). L. 

multiflorum is an apomict tetraploid species, while L. ovalifolium is a related putative sexual diploid 

species with morphological affinities with L. nydeggeri. Studies in L. ovalifolium and L. multiflorum 

have showed differences in these species’ reproductive strategies (Róis et al., 2012, 2015). L. dodartii 

is a facultative apomictic tetraploid species, which is a trait that gives perennial plants the capability of 

obtaining stability for the colonization of large areas (Hojsgaard et al., 2014). Due to its ecological and 

ornamental importance, the analysis of Limonium transcriptomes can provide useful insights to the 

characterization of genetic factors specific to autonomous apomixis and to disclose the molecular 

mechanisms in controlling the switch from sex to autonomous apomixis. 

 

1.9. Objective 

Overall, the work presented in this thesis aimed to detect and functionally annotate significant 

DEGs, through the application of an RNA-seq pipeline, using suitable tools for each data type and 

research goals. Moreover, this project intends to contribute to a better understanding of the different 

expression profiles of the species in investigation, according to each growth conditions, allowing for 

further studies and integration with other omics. Specifically, the main purposes of this work are: 

• Assemble Casuarina glauca and Limonium spp. transcriptomes to use as reference for the 

subsequent expression analysis and functional annotation; 

• Analyze differential gene expression to characterize relevant mechanisms and adaptations of 

studied species of Casuarina, Limonium and Coffea genera; 

• Improve and optimize data analysis to achieve higher quality results regarding transcriptome 

assembly, differential gene expression and functional annotation, by choosing the best 

parameters, tools and software for each dataset. 
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Chapter 2 
 
 
2. Methodology 
 
A basic RNA-seq analysis pipeline consists of a few fundamental steps, depending on the 

existence of a reference genome or transcriptome available for the reviewed organism: raw data 

processing; de novo transcriptome assembly (for non-model species without a reference genome); 

mapping the reads to the transcriptome or reference genome; gene expression quantification; statistic 

testing for differential expression (Mutz et al. 2013). This project was conducted as four separate 

analyses, from three different genera (i.e., Casuarina, Coffea and Limonium), which were analyzed 

through the application of well documented, efficient and effective bioinformatic methods and tools. 

The main methods applied to each dataset were the following: 

• Integrity and quality control of raw data; 

• De novo transcriptome assembly of non-model organisms (i.e., Casuarina and Limonium); 

• Alignment/mapping of reads against the: 

o de novo transcriptome assembly for Casuarina and Limonium; 

o a reference genome for Coffea; 

• Gene expression quantification; 

• DEGs detection; 

• Functional analysis. 

As mentioned before, Illumina RNA-seq raw datasets were obtained from ongoing studies made 

in collaboration with the CoBiG2 research group. Each of the datasets was processed equivalently by 

applying a set of tasks in three separate and individual analyzes, to detect DEGs between plants grown 

under different environmental conditions or different genotypes of the same plant. Furthermore, DEGs 

identified in the analysis were functionally analyzed to better understand the mechanisms and pathways 

involved in the regulation of the most relevant adaptations of each species. 

The analyses were started on a MacBook Air with a 1.8 GHz Dual-Core Intel Core i5 process and 

4GB 1600 MHz DDR3 and completed on a MacBook Pro with a 2.3 GHz Dual-Core Intel Core i5 

processor and 8 GB 2133 MHz LPDD3. Also, some of the most complex and time-consuming analysis 

were performed using three different FCUL servers (one 8-core server with 173 GB of RAM and two 

16-core servers with 62 GB of RAM) running Ubuntu. Most of the analysis on the servers were 

implemented using external access through VPN. Analysis on FCUL servers were performed using 

multiple packages of the 4.7.11. version of Miniconda3 for Linux-64, which is a free minimal installer 
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for conda, with Python version 3.7. The remaining analysis were performed using the fast, free, open-

source Visual Studio Code version 1.42.0 code editor and R Studio version 1.2 (RStudio Team, 2019) 

for macOS, with R version 3.6.0. Figures were edited using the powerful, open-source, free design tool 

Inkscape version 1.0.1 (Inkscape Project., 2020) for macOs. 

 

2.1. Casuarina glauca 
 
RNA-seq specimens of C. glauca from plants either nodulated by Frankia strain Thr (NOD+) or 

supplemented with mineral nitrogen (KNO3
+) were grown under environmental controlled conditions. 

Salt stress was gradually imposed by the addition of 200, 400 and 600 mM NaCl concentrations to 

specimens of each plant. Control plants didn’t receive any addition of NaCl, and no replicates were 

sampled for this analysis. Libraries were prepared with the TruSeq RNA Sample Prep Kit v2 (Illumina, 

USA) and sequenced in the platform Illumina NovaSeq 6000 (2x125 bp pair-end reads; 30 million reads 

per sample) at Macrogen (Korea). RNA-seq datasets were acquired through collaboration with Dr. Ana 

I. Ribeiro-Barros from the Plant-Environment Interactions and Biodiversity Lab (PlantStress & 

Biodiversity) and Forest Research Centre (CEF) of Instituto Superior de Agronomia (ISA). 

 

The sequencing process generated a total of 8 libraries, whose respective raw fastq files were 

deposited in the NCBI Sequence Read Archive (SRA), under BioProject SymbSaltStress with accession 

PRJNA706159 (accessible at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA706159). The raw reads 

were assessed for integrity, quality and contamination through the application of the following tools: 

FastQC version 0.11.9 (Andrews, 2010) to analyze reads quality and FastQ Screen version 0.13 (Wingett 

& Andrews, 2018) to survey putative contaminants. FastQ Screen was instructed to map raw reads 

against the genomes of the 14 default pre-indexed species and adaptors available on Babraham 

Bioinformatics website, namely: Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila 

melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Escherichia coli, Arabidopsis 

thaliana, PhiX174, Enterobacteria Phage Lambda, UniVec vectors database, Mitochondria RNA, FastQ 

Screen rRNA custom database and FastQ Screen sequencing adapters database. To perform the screen, 

6 threads1 were allocated to the process, with Bowtie 2 selected as aligner. Due to the large number of 

datasets, both FastQC and FastQ Screen reports were compiled using MultiQC version 1.10.1 for easier 

visualization and quicker interpretation of results. Trimmomatic version 0.39.1 (Bolger et al. 2014) was 

then used to eliminate the remaining adaptors and low-quality or too small reads, using 

ILLUMINACLIP with keepBothReads option, SLIDINGWINDOW:4:15, MAXINFO:36:0.5 and 

MINLEN:36. After filtering and trimming, Trinity version 2.8.5 (Haas et al. 2013) was used to perform 

de novo transcriptome assembly, combining all C. glauca samples to generate one single assembly. This 

 
1  Number of CPU cores. 
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software was developed specifically for short reads and is advantageous for non-model plant sequence 

assemblies (Grabherr et al. 2011). The assembled transcriptome was assessed for completeness through 

gVolante (Nishimura et al., 2017) online interface with BUSCO v2.0.1 option (Simão et al. 2015). To 

align the reads against the assembled transcriptome, the sequences were processed with Trinity tool 

Bowtie2 version 2.3.5 (Langmead and Salzberg 2012) and the aligned reads for each condition were 

quantified at gene-level expression with RSEM version 1.3.2. (Li and Dewey 2011). The normalized 

expression of all samples was estimated using the Trimmed Mean of M values (TMM). A Principal 

Component Analysis (PCA) was performed to survey the relatedness of all samples using the function 

plotPCA in R studio using R version 3.6.0 (R Core Team, 2019). 

To identify DEGs, a combined set of R packages were applied, namely edgeR version 3.26.8, 

DESeq version 1.36.0 and NOISeq version 2.28.0. The dispersion value in edgeR, which had to be fixed 

manually due to the absence of replicates, was set to 0.1. In NOISeq, the DE was computed using a 

stringent threshold of q=0.9, along with the following parameters: pnr=0.2, nss=5, v=0.02. DESeq was 

used with method="blind" and sharingMode="fit-only" to allow the analysis without any replicates. To 

study the effect of salinity, these three tools were used individually to identify DEGs at each salinity 

level (200 mM, 400 mM and 600 mM NaCl) against the control (0 mM NaCl), for KNO3
+ and NOD+ 

plants, separately. The results were adjusted with the Benjamini and Hochberg’s approach for 

controlling the false discovery rate (FDR) (Benjamini and Hochberg 2000). A filter of FDR < 0.05 and 

a normalized non-zero |log2FC| > 2 were set to define DEGs. The results from edgeR, DESeq and 

NOISeq were combined to increase the accuracy of the analysis, and only the genes detected as 

differentially expressed by the three tools were used on downstream analysis. To visualize the resulting 

expression profiles, volcano plots, heatmaps, barplots and Venn diagrams were plotted for each 

comparison, using the stats and graphics core R packages in R studio and Python’s Matplotlib 3.2.1 

library (Caswell et al. 2020) in Visual Studio Code. 

The BLAST version 2.9.0 command line application from the NCBI C++ Toolkit was used for 

functional annotation of DEGs. Through the application of the blastx tool, DEGs were mapped against 

a local UniProtKB/Swiss-Prot database, filtering the results by maximum E-Value of 1.0E-3 and 

minimum Identities of 40% (Chen et al. 2017). The resultant annotated proteins were then characterized 

by Cellular Component (CC), Molecular Function (MF) and Biological Process (BP) Gene Ontology 

(GO) terms, using the Uniprot and QuickGO APIs to retrieve direct terms and GO term ancestors. Then, 

Clust version 1.8.10 command line tool was applied to visualize the expression patterns of the detected 

DEGs and to find co-expressed genes, based on a selected cluster tightness of 5. Then, the results were 

filtered to keep only the DEGs that were found uniquely in one of the clusters. The resultant lists were 

searched to find GO terms related to salt stress response. Later, an ORA was implemented by g:GOSt 

functional profiling tool from gProfiler website, which was applied using g:SCS tailored algorithm that 

uses a minimum hypergeometric test (Fisher’s exact test). ShinyGO version 0.61 webtool, which is also 

based on hypergeometric distribution followed by FDR correction, was used to retrieve PPIs from the 
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STRING database. In both tools, Arabidopsis thaliana was selected as the organism of interest and 

separate log2FC ranked lists of DEGs for each salinity-stress comparison were used as inputs. 

 

2.2. Coffea canephora and Coffea arabica 
 
Plants from the two main producing species C. canephora Pierre ex A. Froehner cv. Conilon 

Clone 153 (CL153) and C. arabica L. cv. Icatu Vermelho (Icatu), were grown in 12-L pots for 1.5 years. 

Afterwards, plants were transferred into walk-in growth chambers (EHHF 10000, ARALAB, Portugal), 

and grown for another 10 months in 28-L pots under environmental controlled conditions of temperature 

(25/20 °C, day/night), relative humidity (70–75%), irradiance (ca. 700 μmol m−2 s−1), photoperiod (12 

h), and air [CO2] of 380 μmol mol-1. During the whole experiment, the plants were grown in an optimized 

substrate consisting of a mixture of soil, peat, and sand (3:1:3, v/v/v) and fed on a monthly basis with 5 

g of the following fertilizer mixture: 7% Ca(NO3)2, 5% KNO3, 7.8% P2O5, 17% K2O, 1.6% MgO, 20% 

MgSO4, 0,02% H3BO3 and 0.01% ZnSO4. To reinforce the N and Ca availability, a complementary 

fertilization of 2 g was conducted every 3 months with a mixture of 27% NH4NO3 and 6% CaO. Both 

fertilizers were provided as solid spheres that slowly dissolved over successive watering, allowing a 

gradual release of minerals to the soil/plant. To complement the availability of micronutrients, 500 mL 

of a solution containing 0.02% Fe-EDTA, 0.01% CuSO4, 0.01% MnCl2, and 0.005% H2MoO2, were 

added on a monthly basis (Ramalho et al., 2013). All RNA-seq datasets were acquired through 

collaboration with Dr. José C. Ramalho from the Plant-Environment Interactions and Biodiversity Lab 

(PlantStress & Biodiversity) and Forest Research Centre (CEF) of Instituto Superior de Agronomia 

(ISA). 

 

2.2.1. CO2 

 

After the acclimation period, plants from each genotype were grown under either control ambient 

air [CO2] of 380 μmol mol-1 (aCO2) or elevated air [CO2] of 700 μmol mol-1 (eCO2). Total RNA from 3 

replicates of the two [CO2] levels for each genotype was isolated using the RNeasy Plant Mini Kit 

(Qiagen, Germany). The 12 mRNA libraries were constructed with the Illumina “TruSeq Stranded mRNA 

Sample Preparation kit” (Illumina, USA) and sequenced separately on the Illumina Hiseq 2000 platform 

(1x50 bp single-end reads; 28 million reads per sample) at the MGX (Montpellier GenomiX, France, 

www.mgx.cnrs.fr/). Raw reads were quality-checked using FastQC version 0.11.8 and screened for 

contaminants using FastQ Screen version 0.13 against the genome of the 14 default pre-indexed FastQ 

putative contaminant species and adapters. After trimming with Trimmomatic version 0.38, cleaned reads 

were mapped to the reference genome of C. canephora downloaded from the Coffee Genome Hub 

(http://coffee-genome.org) (Denoed et al. 2014) using STAR version 2.6.1 with default settings. HTSeq-
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count version 0.11.0 was used to quantify uniquely mapped reads to each gene, discarding reads in multiple 

alignments, to avoid the increase of false positives. Relevant parameters used included the default mode 

union and the option stranded=reverse. Samtools version 1.9 and gffread version 0.9.9 were used 

throughout the analysis to convert files and obtain general statistics of the genome mapping. Afterwards, 

log2 transformation of Fragments Per Kilobase Of Exon Per Million Fragments Mapped (FPKM+1) and 

quantile normalization were performed using Cufflinks version 2.2.1. For exploratory analysis, Principal 

Coordinate Analysis (PCoA) was conducted to verify the relatedness of every normalized replicate, using 

the function prcomp in R software version 3.5.1. 

DESeq2 version 3.8 was employed to identify differentially expressed genes (DEGs) reflecting 

the effect of eCO2 (eCO2 vs aCO2; aCO2 as control) and differences between the two genotypes (CL153 

vs. Icatu; Icatu as control). The resulting values were adjusted using the Benjamini and Hochberg’s 

approach for controlling the FDR. Genes with a normalized non-zero log2 FC and an FDR < 0.01 were 

defined as differentially expressed. Functional annotations for the protein coding genes in the C. 

canephora genome were downloaded from the Coffee Genome Hub. Because a very high number of 

reads were mapped to the C. canephora genome it was further used as the reference genome for the 

analyses. BLAST2GO version 1.4.4 was used for mapping and functional annotation of DEGs 

(parameters: E-Value-Hit-Filter 1.0E−6, Annotation Cutoff 55, GO Weight 5, Hsp-Hit Coverage Cutoff 

20). After mapping, DEGs were filtered to exclude multiple hits to the same gene, keeping only the one 

that showed the highest identity percentage. The genes were characterized using GO terms of Molecular 

Function (MF), Biological Process (BP) and Cellular Component (CC). A local BLAST database was 

built to map DEGs to the highest identity Uniprot gene hits. GO mapping and GO annotation was then 

performed with Blast2GO command line interface using the Uniprot genes and the local database. 

The raw reads had already been subjected to QC, alignment to the reference genome, DE analysis 

and functional annotation, which results were obtained in the form of CSV files containing full lists of 

annotated DEGs. First, Venn diagrams were plotted using VennDiagram version 1.6.20 R package to 

show the overlap of common DEGs between different comparisons and highlight DEGs specific to the 

effect of eCO2 and to different responses of each genotype. In order to obtain a full set of GO terms 

associated with each DEG, all GO ancestors of each identified term were retrieved using QuickGO API. 

To relate the transcriptomic answer of the two coffee genotypes with their physiological and biochemical 

responses, DEGs were searched for the GO terms referenced in Scalabrin et al. (2020) (i.e., 

photosynthesis, chlorophyll metabolic process, ribulose-1,5-bisphosphate carboxylase/oxygenase, 

antioxidant activity, cellular respiration, malate dehydrogenase activity, and pyruvate kinase activity) 

and FAD and LOX-related proteins, which have been reported as the most important for lipid profile 

dynamics related to stress acclimation in coffee plants. This search was performed using the QuickGO 

API, identifying all direct and descendant GO terms. 

Then, a GSEA was performed using WebGestalt webtool, with a range of 5 to 2000 genes for 

category, a Benjamini & Hochberg (BH) multiple test adjustment and a “TOP” significance level of 10, 
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which ranks categories based on FDR and them selects the top 10 most significant ones. Ranked lists of 

DEGs, sorted by descending log2FC were used as input and mapped against the Arabidopsis thaliana 

functional database. GO terms, KEGG and Wikipathways with an FDR < 0.05 were considered 

enriched. Results were plotted using the R ggplot2 version 3.3.2 library. 

Additionally, the libraries (raw fastq files) generated by the sequencing process were deposited 

in the NCBI SRA, under BioProject CoffeeOmics Climate (PTDC/ASP-AGR/31257/2017), with 

accession PRJNA606444 (accessible at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA606444). 

 

2.2.2. CO2 + Temperature 
 
After acclimation, temperature was raised at a rate of 0.5 °C day−1 (diurnal temperature) from 

25/20 °C to 42/30 °C, with 7 days of stabilization at 31/25, 37/28, and 42/30 °C. The individual and 

combined effects of increased temperature and [CO2] were studied for a moderate supra-optimal 

temperature of 37/28 °C (37 °C) and an extreme supra-optimal temperature of 42/30 °C (42 °C), in 

comparison to the control temperature of 25/20 °C (25 °C), at either aCO2 or eCO2 conditions, for each 

genotype. 

Total RNA from 3 replicates of the three temperatures (25ºC, 37ºC and 42ºC), each under one of 

the two [CO2] levels (aCO2 and eCO2) for each genotype was isolated using the RNeasy Plant Mini Kit 

(Qiagen, Germany) according to the manufacturer’s instructions (two genotypes × two CO2 treatments 

× three temperatures × three biological replicates). The 36 messenger RNA (mRNA) libraries were 

constructed with the Illumina “TruSeq Stranded mRNA Sample Preparation kit” (Illumina, San Diego, 

CA) and sequenced separately on Illumina Hiseq 2000 platform (1x50 bp single-end reads; 30 million 

reads per sample) at the MGX platform (Montpellier GenomiX, France, www.mgx.cnrs.fr/). 

High-quality reads were obtained after several steps of quality checks which included trimming, 

removal of adaptor/primer and low-quality reads using FastQC version 0.11.8 and Trimmomatic version 

0.38 through the trimming steps: ILLUMINACLIP to cut adaptors, SLIDINGWINDOW:4:15 to trim 

low-quality reads and MINLEN:38 to drop small reads. FastQ Screen version 0.13 was used to check 

for contaminants against the genome of the most common model organisms (e.g., Homo sapiens, Mus 

musculus, Rattus norvegicus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces 

cerevisiae, Escherichia coli) and adapter databases (e.g., Mitochondria RNA, PhiX, Vector from 

UniVec database, FastQ Screen rRNA custom database and FastQ Screen Adapters database). 

The filtered high-quality reads were mapped to the reference genome of C. canephora genome 

downloaded from the Coffee Genome Hub using STAR version 2.6.1, with default settings. Htseq-count 

version 0.11.0 was used with default mode union and the option stranded=reverse to count only 

uniquely mapped reads to each gene, discarding reads in multiple alignments and thus avoiding the 

increase of false positives. Samtools version 1.9 and gffread version 0.9.9 were used throughout the 

analysis to obtain general statistics of the genome mapping. Principal Coordinate Analysis (PCoA) was 
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performed on the expression data of genes, FKPM normalized and log10-transformed, using the function 

prcomp in R software version 3.5.1. 

The raw reads had already been subjected to QC, alignment to a reference genome, quantification 

and normalization, which results were obtained in the form of Tab-delimited files containing gene-level 

quantifications ready for DE analysis. Gene expression normalization of all the samples was estimated 

in FPKM. The changes in the relative abundance of the genes between the different genotypes/CO2-

treatments/temperature-treatments were estimated using DESeq2 v1.28.1 and edgeR v3.30.3. Only the 

DEGs identified by both tools as differentially expressed significantly were used in subsequent analyses. 

The resulting values were adjusted using the Benjamini and Hochberg’s approach for controlling the 

FDR. Genes with a normalized non-zero log2 fold change expression and an FDR <0.01 were defined 

as differentially expressed. Python’s matplotlib library was used to plot Venn diagrams and barplots. 

DEGs were annotated following the functional annotation of the reference genome, C. canephora 

downloaded from the Coffee Genome Hub. GO enrichment analyses were applied to understand the 

functional classification of temperature-responsive DEGs through an ORA, using gProfiler under FDR 

< 0.01. Results were summarized using REVIGO by removing redundant GO terms with allowed 

similarity=0.5. Enrichment non-redundant results were plotted using the R ggplot2 version 3.3.2 library. 

This same package was used to plot a heatmap with dendrograms to visualize DEGs based on the 

differential expression patters between the different treatments. To prevent highly differentially 

expressed genes from clustering together without considering their expression pattern, log2 fold change 

was scaled by gene across treatments (row Z-score). 

Additionally, the libraries (raw fastq files) generated by the sequencing process were deposited 

in the NCBI SRA, under BioProject CoffeeOmics Climate (PTDC/ASP-AGR/31257/2017) II, under 

accession PRJNA630692 (accessible at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA630692). 

 

 

2.3. Limonium spp. 
 
All RNA-seq datasets (18 libraries) were obtained through collaboration with Dr. Ana D. Caperta 

from the Linking Landscape, Environment, Agriculture and Food (LEAF) of Instituto Superior de 

Agronomia (ISA). 

Quality control of the raw reads, including contaminants survey, was performed using FastQC 

version 0.11.9 (Andrews 2010) and FastQ Screen version 0.14.0 (Wingett and Andrews 2018), ran 

against the genome of its default pre-indexed species and adaptors. Then, since all raw reads presented 

a quality base score over 36, Trimmomatic version 0.39 (Bolger et al. 2014) was only used to eliminate 

adaptors and filter reads of length bellow 36 base pairs (bp). A de novo transcriptome assembly was 

performed using Trinity version 2.11.0 (Grabherr et al. 2011), in which cleaned reads from all samples 

were combined to generate one global assembly, since this software has shown a consistent performance 
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and has a high read alignment rate (Wang and Gribskov 2016). The assembly was assessed for 

completeness using BUSCO version 5 (Waterhouse et al. 2017), through gVolante2 (Nishimura et al., 

2017). After alignment against the transcriptome using Bowtie2 aligner version 2.3.5 (Langmead and 

Salzberg 2012), sequences were quantified at gene-level expression with RSEM version 1.3.3 (Li and 

Dewey 2011), through Trinity pipeline. A Principal Component Analysis (PCA) was performed to 

survey the relatedness of normalized gene counts using the function plotPCA in R studio version 4.0.2 

(R Core Team, 2020). Then, a heatmap with dendograms was plotted with R ggplot2 version 3.3.2 

library (Wickham, 2016) using the same counts to cluster samples based on their expression profiles 

similarity. 

To study significant differences between sexual and apomictic plants, differential expression 

analysis was performed with edgeR version 3.30.3 (Robinson et al., 2010), which is a flexible empirical 

Bayes approach that uses weighted likelihood methods to estimate gene-specific variation even with 

very few or no replicates (Chen et al., 2014). DEGs were searched in apomictic plants (L. multiflorum) 

in S1 relative to sexual plants (L. nydeggeri and L. ovalifolium) in both S1 and S2. Also, differential 

expression analysis was performed in apomictic plants in S2 relative to sexual plants in S3/S4 and to 

facultative apomictic plants (L. dodartii) in S4. Apomictic plants were set as the samples to test, while 

sexual and facultative apomictic plants were set as the controls, according to each comparison.  Genes 

with a normalized |log2 fold change (log2 FC)| > 2 were defined as differentially expressed and used in 

the downstream analysis. In the comparison between apomictic and facultative plants, in which all 

samples have at least 3 replicates, DEGs were also filtered by p < 0.01. Venn diagrams were used to 

plot DEGs overlapping between different comparisons, through matplotlib version 3.3.3 (Caswell et al. 

2020) in Python version 3.9.0 (Python Software Foundation 2020). 

Functional annotation of DEGs was performed with Basic Local Alignment Search Tool 

(BLAST) version 2.10.1 command line tool from the NCBI C++ Toolkit (National Center for 

Biotechnology Information 2020). Blastx was used to map DEGs to Arabidopsis thaliana homologs, 

against a local Swissprot database, filtering gene hits by maximum E-Value of 1.0E-3 and minimum 

Identities of 40% (Chen et al., 2017). Then, to avoid duplicated results, DEGs annotated to the same A. 

thaliana homolog were filtered by identities and sequence length, keeping the transcripts with the 

highest values. Uniquely annotated DEGs were characterized with GO terms, using UniprotKB website 

REST API (The Uniprot Consortium 2019). GO enrichment analyses were applied to log2 FC ordered 

lists of DEGs through an Over-representation analysis (ORA), using the g:GOSt functional 

profiling tool from gProfiler website (Raudvere et al. 2019), with the g:SCS tailored algorithm under 

FDR<0.01. Enrichment results were summarized using REVIGO (Supek et al., 2011) through the 

remotion of redundant GO terms with allowed similarity=0.5 and then plotted with the R ggplot2 version 

3.3.2 library. 

After DE analysis, gene expression of DEGs was analyzed to find DEGs that were knocked out 

either in the test sample or the control, selecting the genes that had no expression in only one of those 
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samples. Also, DEGs shared by more than one comparison were searched for opposite regulation. 

KEGG and WikiPathways enrichment analysis was then performed with gProfiler in the results from 

both methods to find relevant metabolic pathways. 
According to literature, TFs can be involved in plants fertility. Also, studies have suggested that 

the following genes can be responsible for male sterility: ROS1, DMC1, MS2, pop1 and 4CLL1. As 

such, these genes, along with a list of A. thaliana TFs retrieved from the Plant Transcription factor & 

Protein Kinase Identifier and Classifier (iTAK) (Zheng et al., 2016), were searched among DEGs to find 

if they were downregulated or repressed in apomictic plants. Furthermore, annotated lists of DEGs were 

searched for GO terms related to pollen tube, such as the biological processes pollen tube reception 

(GO:0010483), pollen tube development (GO:0048868), pollen tube growth (GO:0009860), regulation 

of pollen tube growth (GO:0080092) and pollen tube adhesion (GO:0009865), and the cellular 

components pollen tube (GO:0090406) and pollen tube tip (GO:0090404). 

Additionally, the libraries (raw fastq files) generated by the sequencing process were deposited 

in the NCBI SRA, under BioProject Sexual and apomictic regulation in Limonium spp., under accession 

and PRJNA752506 (accessible at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA752506). 

 

 



 37 

Chapter 3 
 
 
3. Results 
 
The main goal of my master’s thesis is to apply a state-of-the-art workflow for the analysis of 

transcriptomic datasets from different plants samples, with special focus on the observation of samples 

subjected to abiotic stress-inducing factors, compared to control conditions. After revising the current 

literature, a set of tools was chosen to perform the analysis, aiming to obtain high quality results with 

useful biological meaning. Additionally, a set of scripts were developed to speed up and automatize the 

analysis, using Python and R languages. These scripts are publicly available at 

https://github.com/ziisabel/CoBiG2/tree/cobig2 and can be used to perform similar analysis. The 

mainFunctions.py script was developed to be called by other scripts, since it includes a set of 

functions that are needed in multiple of them, contributing to reduce code redundancy. The applied 

workflow initially involves a preprocessing step to remove adaptors, contaminants, low quality bases 

and sequencing errors. For this step, I developed 2 Python scripts, namely fastqAnalysis.py, 

which allows users to apply FastQ Screen, FastQC and/or MultiQC to assess and visualize the quality 

of multiple sequencing files and filter contaminants, and runTrimmomatic.py, which runs 

Trimmomatic for multiple files simultaneously, from either single-end or paired-end reads. 

Afterwards, for the organisms that don’t have a quality reference genome available, I developed 

the Python script trinityMultiple.py, which performs the novo assembly of multiple sequencing 

files with Trinity, according to the users input parameters. To prepare the reference genome for 

alignment, sometimes it’s necessary to make some amendments to the respective file, such as convert 

a multiple-line into a single-line per gene FASTA file. To achieve this, I developed the script 

clean_fasta.py, which was projected to work with the Coffee arabica reference genome from 

RefSeq, GCF_003713225.1_Cara_1.0_cds_from_genomic.fna (available online at 

https://www.ncbi.nlm.nih.gov/assembly/GCF_003713225.1). This same file can be used to extract gene 

and protein names using the Python script get_Carabica_annotations.py. Additionally, I 

developed the Python script write_annotation_genes.py, which extracts ORF and protein 

names from GFF3 annotation files, searching UniprotKB to complete that information with gene name 

and related GO terms.  
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The next step is to align the reads with a reference genome or assembled transcriptome, for which 

I developed the Python script STARmultiple.py to perform multiple sequencing files with STAR, 

also from either single-end or paired-end reads. To visualize samples and inspect for outlier, I developed 

the R script pca_DESeq2.R, which uses the mean of ratios normalization method from DESeq2 

package, with either rlog or vst data transformation, to normalize the gene counts raw data and plot the 

respective Principal Component Analysis (PCA). Subsequently, the differential expression analysis was 

performed with DESeq2, edgeR and NOISeq, through the development of the following scripts: 

DE_analysis_DESeq2.R, DE_analysis_edgeR.R and DE_analysis_NOISeq.R. Also, 

to overlap the results from DESeq2 and edgeR for the same data, I developed the 

DE_analysis_overlap_DEGs.py.  

After differential analysis, the resultant lists of DEGs can be used for multiple purposes. To 

visualize DEGs based on their differential expression patterns between different treatments relative to 

the control, I developed the R script heatmap.R. This script includes the scale of the log2 fold change 

by gene across treatments (row Z-score) to prevent highly differentially expressed genes from clustering 

together without considering their expression pattern. To easily organize the generated information in 

table format, I develop the Python script get_DEGs_tables.py, which writes DEGs annotations 

in a tab-delimited text file (.TAB), including gene name, protein name and GO terms. Additionally, to 

filter redundant genes, with the exact same annotations, I developed the Python scripts 

get_unique_DEGs.py, which filters DEGs based on the most similar homologs identified through 

blastx (higher identities percentage) and get_TAIRs_longer_transcript.py, which filters 

DEGs based on the longer transcript among genes blasted to the same homolog gene. Another way to 

annotate DEGs, especially when there isn’t an annotated reference genome available, is to use the 

BLAST tool to find homologs genes from related species. To perform this task, I developed the Python 

scripts runBlastx.py, which finds DEGs homologs through blastx, and 

write_annotations_DEGs.py, which writes tab-delimited text files (.TAB) with UniProtKB 

annotations searched with the respective API, using the blastx results. This script is specially optimized 

to work with Arabidopsis thaliana homologs. Other useful way to interpret the biological meaning of 

DEGs is to study the transcription factors (TFs) among them. As such, I developed the Python script 

get_TairsTFfromiTAK.py, which generates a tab-delimited text file (.TAB) associating DEGs 

and their regulation type to the respective TF family names from their A. thaliana homologs, retrieved 

from the iTAK (Plant Transcription factor & Protein Kinase Identifier and Classifier) database. 

Moreover, it can be useful to known which DEGs are totally knocked out (KO) in one of the samples 

(control or test), for which I developed the Python script get_KOgenes.py, which creates multiple 

tab-delimited text files (.TAB) with lists of KO genes in a sample, relative to its test or control. 

Additionally, I developed the Python script get_oppositeRegulationDegs.py, which creates 
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two tab-delimited text files (.TAB), one for up and another for down-regulated DEGs, with lists of 

DEGs shared between two comparisons presenting opposite regulation. 

The GO enrichment analysis is another useful resource to assign biological meaning to this type 

of data. To optimize and speed-up that process, I developed 5 scripts (4 Python + 1 R) dedicated to the 

over-representation analysis (ORA) with gProfiler and to the GO terms redundancy reduction with 

REVIGO. The generate_GMT.py script allows the user to generate personalized GMT files to use 

as input background in gProfiler, which is very important to obtain meaningful results, that accounts 

for technologic, detection and biological bias. The get_gProfiler_input.py script creates 

multiple TAB files that can be used as input in gProfiler to perform ORA. After running the analysis, 

the CSV files generated from gProfiler can be used to feed the clean_gProfiler.py script, which 

reformats them for easier readability and data extraction, either for plotting or further manipulation with 

REVIGO. This tool can be used when the list of GO enriched terms is very long to summarize the 

results by eliminating redundant terms within a defined range of similarity between terms. Then, the 

CSV files generated in that process, can be edited with the clean_revigo.py script for easier 

visualization and direct plotting with the plot_enrichment_gProfiler.R script. The results are 

documented via graphical output and tables. 
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3.1. Casuarina glauca 
 

Quality control generated an average of ca. 25 M (71%) clean reads from ca. 35 M raw reads in 

NOD+ plants and an average of ca. 26 M clean reads from ca. 36 M raw reads in KNO3
+ plants (Figure 

3.1; Table 3.1). The minimum per base sequence quality was improved from 2 in raw reads to 31 in 

clean reads (Figure 3.2). The GC content was in average 46% pre-processing and 45% post-processing. 

According to the set parameters, minimum sequence length was reduced to 36 bp after trimming, 

maintaining the maximum of 125 bp per clean read. As expected in this type of RNA-seq data, the first 

12-13 bp of all samples failed the per base sequence content report due to library preparation bias. The 

percentage of duplicated reads ranged from 60% to 70% and the adapter content reached a local 

maximum of 20% in the 3’ end of reads.  

 

 
Table 3.1. Sequencing data from C. glauca NOD+ and KNO3

+ samples, grown in different salinity stresses (200 mM, 400 mM 
and 600 mM NaCl), plus the control (0 mM NaCl). Raw reads, obtained after sequencing, generated clean reads after 
submission to quality control with FastQC and Trimmomatic software [Min. quality: minimum sequence per base quality]. 
 

Plant-
type 

[NaCl] 
mM Strand 

Raw Reads   Clean Reads 
Total 

Sequences 
% 
GC 

Min. 
quality    Total 

Sequences % % 
GC Min. quality 

NOD+ 

0 forward 37010538 46 28  26559076 72 46 33 
reverse 37010538 46 15  26559076 72 46 31 

200 forward 33417448 45 28  25496114 76 45 33 
reverse 33417448 45 15  25496114 76 45 31 

400 forward 33716971 45 28  22905738 68 45 33 
reverse 33716971 45 15  22905738 68 45 31 

600 forward 33881260 46 27  24012917 71 45 33 
reverse 33881260 46 15  24012917 71 45 31 

Average   34506554 46 21   24743461 72 45 32 

KNO3+ 

0 forward 37089848 46 28  27361402 74 45 33 
reverse 37089848 46 2  27361402 74 46 31 

200 forward 38696059 46 28  27277745 71 45 33 
reverse 38696059 46 15  27277745 71 46 31 

400 forward 33546743 45 28  24471108 73 45 33 
reverse 33546743 45 15  24471108 73 45 31 

600 forward 35472156 46 28  26000474 73 45 33 
reverse 35472156 46 15  26000474 73 46 31 

Average   36201202 46 20   26277682 73 45 32 
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Figure 3.1. Total number of reads per sample, before and after processing with Trimmomatic, according to FastQC. Plot 
created with Excel and edited in Inkscape. 

 
 

 

 
Figure 3.2. Per base sequence quality of reads, according to FastQC. Plot created with MultiQC and edited in Inkscape. (A) 
Raw reads. (B) Clean reads post-processing with Trimmomatic. 
 
 
 

Only a small number of raw reads of each sample mapped to the surveyed sequences in FastQ 

Screen, with < 3% mapping uniquely to Arabidopsis thaliana, < 2% to adaptors and < 0.1% to other 

sequences (Figure 3.3). Since these values were particularly low and this analysis is focused on short 

reads of a non-model species, this result was expected, and all trimmed reads were used in the assembly 

to avoid losing important information. 
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Figure 3.3. Percentage of mapped raw reads of C. glauca KNO3

+ and NOD+ plants to main contaminants, according to FastQ 
Screen. Plot created by MultiQC and edited on Inkscape [(1) forward read; (2) reverse read]. 
 
 
 

The de novo assembly showed 41% GC content within a total of 181,484 contigs, 86,202 

unigenes and a contig N50 size of 2792. More than 96% of the reads were mapped back to the 

transcriptome, which had almost 95% completeness, indicating that a high-quality transcriptome 

assembly has been generated for downstream analyses. The detailed list of basic metrics approaching 

composition, alignment and completeness quality of the assembly can be seen in Figure 3.4 and in Table 

3.2. 

 

 
Figure 3.4. Completeness quality of the novo assembly of Limonium transcriptome, according to BUSCO database, using 

gVolante. 
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Table 3.2. Basic metrics of composition, alignment and completeness quality of the de novo transcriptome assembly of C. 
glauca NOD+ and KNO3

+, grown at 0 mM, 200 mM, 400 mM and 600 mM NaCl. 
 

Completeness assessment Values 
Total number of core genes queried 1440 
Number of complete core genes detected 1366 (94.86%) 
Number of missing core genes 28 (1.94%) 
Average number of orthologs per core genes 1.92 
% of detected core genes that have more than 1 ortholog 60.54 
Scores in BUSCO format C: 94.8% [S: 37.4%, D: 57.4%], F: 3.2%, M: 2.0% 
Length statistics and composition  

Total assembled contigs 181484 
Total assembled genes 86202 
Total length (nt) 289780263 
Longest contig (nt) 17867 
Shortest contig (nt) 183 
Mean contig length (nt) 1597 
Median contig length (nt) 1036 
# Contig sequences with ORF 76648 
% Mean ORF 40 
N90 727 
N50 sequence length (nt) 2792 
L50 sequence count 34704 
N10 5729 
Number of sequences > 1K (nt) 92205 (50.8%) 
Number of sequences > 10K (nt) 170 (0.1%) 
Base composition (%) A: 30.98; T: 27.94; G: 19.24; C:21.85 
N 0 
GC-content (%) 41.09 
Number of non-ACGTN (nt) 0 
Alignment statistics  
Total reads (PE) 204084574 
Total aligned reads 196275145 (96.2%) 
Concordantly unaligned and discordantly aligned reads 435225 (0.2%) 
Total aligned mates 11388138 (2.8%) 
Overall alignment rate 99.2% 

 

 

Principal Component Analyses (PCA) showed a distinct separation of samples in four different 

quadrants: (i) 0 mM and 200 mM NaCl KNO3
+; (ii) 0 mM and 200 mM NaCl NOD+; (iii) 400 mM and 

600 mM NaCl KNO3
+; and (iv) 400 mM and 600 mM NaCl NOD+. PC1 accounted for 86% of the total 

variance, with a clear division between the samples with lower (0 and 200 mM) and higher (400 and 

600 mM) [NaCl], while PC2, comprising 9% of the variance, distinguished KNO3
+ from NOD+ plants 

(Figure 3.5). 
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Figure 3.5. PCA of gene expression counts from C. glauca NOD+ and KNO3

+ samples, grown at control (0 mM NaCl) and 
salinity-stressed conditions (200 mM, 400 mM and 600 mM NaCl). 

 
 

The KNO3
+ plants expressed a total of 19,913 genes at 0 mM NaCl and an average of 19,645 

genes among salinity-stressed samples (Table 3.3.). Overall, the number of DEGs increased with 

increasing salinity, although the percentage of significant DEGs between each salinity condition and 

the control was extremely low, ranging from 0.04% to 2% with increasing salinity (Figure 3.6). In the 

same plants, the totality of DEGs were downregulated at 200 mM NaCl and 88% were down-regulated 

at 400 mM NaCl and 600 mM NaCl. The NOD+ plants expressed a slightly higher number of genes 

compared to KNO3
+, with a total of 20,278 at 0 mM NaCl and an average of 19,780 among salinity-

stressed samples. Similar to KNO3
+ plants, a decreasing number of common genes and an increasing 

number of DEGs were observed with increasing salinity. However, the percentage of significant DEGs 

at all salinity conditions was slightly higher in KNO3
+ plants, varying only from 0.03% to 1%, with 

increasing salinity. In these plants, the majority of DEGs were also down-regulated, ranging from 60% 

to 85% with increasing salinity, with the exception of 200 mM NaCl, where DEGs were equally 

distributed between the two types of regulation. 
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Table 3.3. DE quantification in C. glauca NOD+ and KNO3
+, at salinity-stressed conditions relative to control (0 mM NaCl). 

[200: 200 mM vs. 0 mM, 400: 400 mM vs 0 mM and 600: 600 mM vs. 0 mM]. 
 

Plant-
type 

[NaCl] 
mM 

Expressed Genes   
  

Detected DEGs   
  

Overlapping DEGs 

Stressed Control Common (%) DESeq NOISeq edgeR Total (%) Up Down 

KNO3
+ 

200 20765 19913 15928 (78%)  58 330 23  9 (0.04%) 0 9 

400 19078 19913 15079 (77%)  524 1213 381  238 (1%) 28 210 

600 19092 19913 14976 (77%)   650 1450 612   359 (2%) 45 314 

Average 19645 19913 15328 (77%)         

NOD+ 

200 19397 20278 16386 (83%)  44 204 20  6 (0.03%) 3 3 

400 20470 20278 16137 (79%)  359 962 184  104 (0.5%) 42 62 

600 19472 20278 15547 (78%)   548 1261 373   254 (1%) 37 217 

Average 19789 20278 16023 (80%)         

 

 

 

 
Figure 3.6. Total number of DEGs in C. glauca plants NOD+ and KNO3

+. [200: 200 mM vs. 0 mM NaCl, 400: 400 mM vs 0 
mM NaCl and 600: 600 mM vs. 0 mM NaCl]. 
 
 
 
 

The DEGs were searched for salt-treatment specificity in order to find which genes were 

differentially expressed in only one of the treatment conditions (200mM, 400mM, or 600 mM NaCl) 

relative to control. Not surprisingly, the number of treatment-specific DEGs increased with the salt 

concentration in both plant groups (Figure 3.7). Also, the combined number of DEGs specific to 400 

mM or 600 mM NaCl, relative to control, accounted for the majority of all treatment-specific DEGs in 

both plants, being around 66% in KNO3
+ and 85% in NOD+ plants. Moreover, the number of DEGs 

shared by 200 mM and 400 mM NaCl was always smaller than the ones shared by 400 mM and 600 

mM NaCl. 

 

KNO3+ NOD+



 46 

 
Figure 3.7. Treatment-specific and overlapping DEGs in C. glauca KNO3

+ and NOD+ plants, at 200 mM, 400 mM and 600 
mM NaCl, relative to control. (A) KNO3+ (B) NOD+. [200 mM: 200 mM vs. 0 mM, 400 mM: 400 mM vs 0 mM and 600 mM: 
600 mM vs. 0 mM]. 
 
 

Comparing KNO3
+ and NOD+ plants, no DEGs were detected in both plants at 200 mM NaCl, 

while 32 (10%) and 135 (28%) were shared at 400 and 600 mM NaCl, respectively (Figure 3.8). 

Regardless salinity concentration, the number of plant-specific DEGs was always higher in KNO3
+ than 

in NOD+. 

 

 

 
Figure 3.8. Treatment-specific and overlapping DEGs of C. glauca of either KNO3

+ or NOD + plant-type, under different 
stress-salinity conditions. (A) 400mM vs 0 mM NaCl; (B) 600mM NaCl vs 0 mM. 

 
 
After functional annotation, less than half of all DEGs were uniquely mapped to 

UniProtKB/Swiss-Prot database proteins. The differential expression values of annotated DEGs were 

only slightly higher in NOD+ plants, in which log2 FC ranged from -7.8 to 5.1, comparatively to KNO3
+ 

which varied from -6.9 to 4.9. In KNO3
+ plants, the only annotated DEGs at 200 mM NaCl were ERF020 

and GT-3B, which are related to stress signal and response to salt, respectively. 

When comparing differential expression across conditions, the dendogram of the heatmap 

grouped samples into two main clusters, one with all samples of NOD+ plus KNO3
+ at 200 mM, and 

another with the remainder KNO3
+ samples. In the first one, the two samples grown at 200 mM were 

closer together, followed by the 400 mM sample and then by the 600 mM sample (Figure 3.9). 
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Figure 3.9. Heatmap and dendograms of the normalized log2 FC of DEGs in C. glauca KNO3

+ and NOD+, grown at 200 mM, 
400 mM and 600 mM NaCl, relative to control (0 mM NaCl). The plotted values are scaled by row to improve visualization. 
Column color labels groups comparisons by salinity concentration (darker: highest salinity; lightest: lowest salinity). 
 
 
 

In KNO3
+ plants, co-expression analysis grouped DEGs in 10 clusters (Figure 3.10). Clusters C0 

to C2, C8 and C9 consistently presented a clear downregulation of DEGs at 600 mM NaCl relative to 

the control, with differences in the regulation pattern at the intermediate salinities. Cluster C0 showed 

a progressive downregulation with increasing salinity from 200mM to 600mM NaCl, while C1 

displayed an accentuated downregulation only after 400mM NaCl. Although clusters C2 and C3 

presented a sharp downregulation between 400mM and 600mM, they also showed an increasing 

upregulation from control to 400mM NaCl, more evidently in C3. The downregulation pattern in 

clusters C8 and C9 was marked at 400mM NaCl relative to the control, exhibiting a more progressive 

decrease in C8, and showing only a slight change at the highest salinity condition in both clusters. 

Oppositely, clusters C4 and C5 consistently presented a strong upregulation of DEGs from 0 to 600mM 

NaCl. Overall, in clusters C6 and C7 a downregulation was observed at 400mM NaCl, which was more 

accentuated in C7 and reverted at 600mM NaCl in both cases. 
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Figure 3.10. Expression pattern of DEGs in C. glauca KNO3

+ plants, clustered by potential co-expression. 
 
 

In NOD+ plants, co-expression analysis grouped DEGs in 11 clusters (Figure 3.11). Clusters C0 

to C5 and C10 presented a noticeable downregulation of DEGs at 600 mM NaCl relative to control, 

with different patterns of regulation at the intermediate salinities. Clusters C0 and C1 showed a similar 

behavior than the same clusters in KNO3+ plants, with the first having a progressive downregulation 

with increasing salinity and the second only showed an accentuated downregulation at 600mM NaCl. 

Clusters C2 and C3 showed an upregulation at 200mM NaCl, which overall was reverted at higher 

salinity levels. In clusters C4 and C5 the major downregulation happened rapidly between 200mM and 

400mM NaCl, being moderately reverted in C5 at 600 mM NaCl. In cluster C10, the downregulation 

occurred in two marked steps, between control and 200 mM NaCl and between 400 mM and 600 mM 

NaCl. Clusters C6 and C7 presented a strong downregulation at 400mM NaCl, which was inverted at 

600 mM NaCl. However, the upregulation at 600 mM was much more evident in C7, showing an 

upregulation relative to the control. 

 

 
Figure 3.11. Expression pattern of DEGs in C. glauca NOD+ plants, clustered by potential co-expression. 
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DEGs in almost all clusters, from both plants, were associated with binding, catalytic activity, 

transport, signaling. Also, there was a predominance of terms related to defense responses and defense 

to stresses and stimulus, namely hypoxia, water deprivation, oxidative, osmotic, cold and salt. 

Moreover, in NOD+ plants, it was also found a relation with responses to wounding, auxin, carbon 

dioxide, ozone, jasmonic and abscisic acid and biotic stimulus. 

A few sets of enriched GO terms were found in the ORA, which included DEGs at 400 mM and 

600 mM NaCl (Figure 3.12). Due to its low number, no enriched GO terms were found for DEGs at 

200 mM NaCl. In KNO3
+ plants, DEGs at 400 mM NaCl were found to be enriched for UDP-

glycosyltransferase activity, cell wall organization, external encapsulating structure organization, 

defense response to bacterium, polysaccharide biosynthetic process, leaf abscission and anchored 

component of plasma membrane. In NOD+ plants DEGs were only enriched for glutamate 

dehydrogenase (NAD+) activity, terpenoid catabolic process and plasma membrane. Furthermore, 

DEGs from both plants were also enriched for cell periphery. At 600 mM NaCl, DEGs from both plants 

were enriched for multiple binding functions, protein serine/threonine kinase activity, protein 

phosphorylation, defense responses and abscission. Moreover, in NOD+ plants, DEGs were also 

enriched for oxidoreductase and phospholipase activities, multi-organism process, lipid catabolic 

process, response to hypoxia and cell death. 

 

 
Figure 3.12. Enriched GO terms among down-regulated DEGs, considering the effect of salt-stress at 400 mM and 600 mM 
in C. glauca KNO3

+ and NOD+ plants. GO terms are grouped (shape) by the main category – Biological Process (BP), 
Molecular Function (MF) and Cellular Component (CC). Counts (size) indicate the number of DEGs annotated with each GO 
term and dots are colored by adjust p-value (padj). 
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Using ShinyGO, enriched KEGG pathways were only observed at 600 mM NaCl in NOD+ plants, 

namely cyanoamino acid metabolism, amino sugar and nucleotide sugar metabolism and starch and 

sucrose metabolism (Figure 3.13). With the same software, PPI networks from STRING database were 

found at 600 mM NaCl in both plant groups. In KNO3
+ plants, three DEGs at 600 mM NaCl were 

mapped in the network, namely SAG101, CRT3 and TAO1. The first two, which were related to 

regulation of response to stress and positive regulation of response to stimulus, were directly linked in 

the network. Also, these two genes were indirectly linked to RBOHD, which was associated to cell 

death in NOD+ plants. In NOD+ plants, four DEGs were mapped in the network, namely SAG101, 

CRT3, TAO1 and PUB17. Again, the first two were directly linked in the network. However, in this 

case, while CRT3 was associated to cell death, SAG101 was related to immune system process, 

response to bacterium, regulation of response to stress and positive regulation of response to stimulus. 

Also, PUB17, which was associated with immune system process, was indirectly linked to both of these 

genes. 

 

 

 
Figure 3.13. PPI networks of DEGs in C. glauca, grown at 600 mM NaCl relative to control, retrieved through ShinyGO, 
based on STRING database. (A) KNO3

+ plants. (B) NOD+ plants. [Orange: directly or indirectly linked; Blue: unlinked]. 
 
 
  

A. B.
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3.2. Coffea canephora and Coffea arabica 
 

3.2.1. CO2 

 
Marques, I., Fernandes, I., David, P., Paulo, O. S., Goulao, L. F., Fortunato, A. S., Lidon, F. C., 

DaMatta, F. M., Ramalho, J. C., & Ribeiro-Barros, A. I. (2020). Transcriptomic Leaf Profiling Reveals 

Differential Responses of the Two Most Traded Coffee Species to Elevated [CO2]. International 

journal of molecular sciences, 21(23), 9211. https://doi.org/10.3390/ijms21239211 

 
 

In analysis previous to this work, quality assessment and data filtering generated an average of 

26 M (93%) clean reads from 28 M raw reads, with a high proportion (81%) of uniquely reads aligned 

to the reference genome of C. canephora, which demonstrated a very good coverage over the species 

transcriptome (Table 3.4). Through visual inspection of the PCA, replicate 1C was considered an outlier 

and thus removed from the downstream analysis (Figure 3.14). 

 
Table 3.4. Genome mapping showing the alignment and reads counting results of the transcriptome of Icatu and CL153 against 
the genome of Coffee canephora. A, B, C correspond to the individual biological replicates. RAW READS: number of reads 
obtained after sequencing. CLEAN READS: number of reads passing the Illumina quality filters and downstream filters. % 
CLEAN: percentage of reads passing filters compared to the number of raw reads. % MULTIPLE MAP: proportion of reads 
aligned to exons of several overlapping genes compared to the number of clean reads. % UNMAPPED: proportion of non-
aligning reads compared to the number of clean reads. 
 

GENOTYPES 
[CO2] 

(µL L-1) REPLICATES 
RAW 

READS 
CLEAN 
READS 

% 
CLEAN 

% MULTIPLE 
MAP 

% 
UNMAPPED 

ICATU 380 1A 28702752 26442162 92.1 9.10 3.2 
  1B 28603251 26372236 92.2 12.7 3.1 
  1C 27795986 25107797 90.3 23.2 3.2 
  Average 28367329 25974065 91.5 15.0 3.2 
 700 3A 30895839 29009249 93.8 13.3 3.1 
  3B 25630485 23784221 92.8 17.6 3.2 
  3C 31962251 29719153 92.9 18.1 3.3 
  Average 29496191 27504207 93.2 16.3 3.2 
CL153 380 5A 24532884 22853193 93.1 18.8 2.8 
  5B 28922635 26926317 93.1 19.8 2.8 
  5C 25702571 23940567 93.1 19.5 2.7 
  Average 26386030 24573359 93.1 19.4 2.8 
 700 7A 29807104 27910922 93.6 12.9 2.5 
  7B 26162690 24625490 94.1 12.8 2.5 
  7C 25883732 24238764 93.6 14.2 2.8 
  Average 27284508 25591725 93.8 13.3 2.7 
Total average   27883515 25910839 92.9 16.1 2.9 
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Figure 3.14. PCA of rlog transformed gene expression data in Icatu and CL153, grown either in aCO2 or eCO2. 

 
Icatu expressed 21,714 genes under aCO2 and 21,659 genes under eCO2, which was more than 

the genes expressed by CL153 at the same conditions: 20,728 and 21,186, respectively. Conversely, as 

a response to eCO2, CL153 presented 6,486 (31%) DEGs, while Icatu only had 4,895 (23%). In both 

genotypes, the proportion of up- and down-regulated DEGs was close to 50%. Overall, the log2 FC 

values of DEGs ranged from -8.08 to 6.11 in Icatu and from -5.31 to 9.88 in CL153. A high number of 

DEGs (2799) was found to share the same response to eCO2 in the two genotypes, corresponding to 

57% of all DEGs in Icatu, and to 43% of CL153 DEGs (Figure 3.15). 

 

 

 
Figure 3.15. Down- and up-regulated DEGs at eCO2 relative to control, shared by the two genotypes (green), specific 
of CL153 (yellow) and specific of Icatu (blue).  
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In the DE analysis between genotypes, 6,764 genes were found to be differentially expressed 

under eCO2 and 5,914 under aCO2. Of the totality of DEGs in CL153 relative to Icatu, 37% were present 

regardless [CO2], while 34% were only present at eCO2 and 27% only at aCO2, showing that the 

differences between genotypes are accentuated with increased [CO2] (Figure 3.16). The log2 FC values 

of DEGs between genotypes varied from -13.36 to 14.23 under aCO2 and from -10.99 to 12.17 under 

eCO2.  

 
 

 
Figure 3.16. Down- and up-regulated DEGs of CL153 relative to Icatu, present at both [CO2] (brown), specific at eCO2 
(yellow) and specific at aCO2 (pink). 
 
 
 

In addition to the 2799 DEGs at eCO2 shared by the two genotypes with the same regulation 

pattern, 566 (17%) DEGs showed opposite patterns. From those, 311 DEGs were down-regulated in 

CL153 but up-regulated in Icatu, while 255 exhibited the opposite regulation (Figure 3.17). 

 

 

 
Figure 3.17. Expression of up- (­) and down-regulated (¯) DEGs at eCO2 relative to aCO2 in both genotypes, either 
exhibiting similar (=) or opposite (¹) patterns. 
 
 
 

The functional characterization of eCO2-responsive DEGs from Icatu revealed an association 

with 3,923 (32%) GO terms in the BP category, 4,097 (34%) in the MF and 4,168 (34%) in the CC. 
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However, only 3 of the GO terms from the BP category were found to be significantly enriched, all 

related to up-regulated DEGs. In comparison, the functional characterization of eCO2-responsive DEGs 

from CL153 established a relation with 5,205 (32%) BP’s, 5,373 (33%) MF’s and 5,590 CC’s (35%). 

Although the proportion of annotations in relation to the number of DEGs was similar in both genotypes, 

there was a greater number of enriched GO terms in CL153, more specifically 8 terms from the BP 

category, 4 terms from the MF and 1 from the CC. From these, 2 BP and the CC terms were associated 

to down-regulated DEGs, while the remainder are part of the annotation of up-regulated DEGs. The full 

set of enriched GO terms of both genotypes is presented in figure 3.18. 

 

 

 
Figure 3.18. Significantly enriched GO terms, according to GSEA, among down- (blue) and up-regulated (red) DEGs, 
considering the effect of eCO2 in CL153 (left) and Icatu (right). GO terms are grouped by main category – Biological Process 
(GO:BP), Molecular Function (GO:MF) and Cellular Component (GO:CC). Counts indicate the number of DEGs annotated 
with each term and dots are colored by ascending normalized enrichment score (NES). 
 
 

 
Moreover, among DEGs in CL153 relative to Icatu, 2 GO terms were significantly enriched, 

under eCO2, namely plastid membrane and oxidoreductase activity acting on diphenols and related 

substances as donors, associated with down- and up-regulated DEGs, respectively (Figure 3.19). 
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Figure 3.19. Significantly enriched GO terms, according to GSEA, among down- (blue) and up-regulated (red) DEGs, 
comparing CL153 to Icatu, under the effect of eCO2. GO terms are grouped by main category – Molecular Function 
(GO:MF) and Cellular Component (GO:CC). Counts indicate the number of DEGs annotated with each term and dots 
are colored by ascending normalized enrichment score (NES). 
 
 

When searching for pathway enrichment, 2 KEGG pathways were found to be significantly 

enriched among up-regulated DEGs at eCO2 relative to aCO2, in CL153. Also, 1 enriched pathway from 

WikiPathways was found in up-regulated DEGs between genotypes, under eCO2 (Table 3.5).  

 
 
Table 3.5. GSEA of differentially expressed genes DEGs from KEGG and WikiPathways databases. Counts indicate the 
number of DEGs annotated with each pathway and normalized enrichment scores (NES). 
 

Database ID Description Counts NES 

eCO2 vs. aCO2 | CL153 

KEGG 
map00906 carotenoid biosynthesis 12 1.99 

map00073 cutin, suberine and wax biosynthesis 5 1.76 

CL153 vs. Icatu | eCO2 

WikiPathways WP3661 genetic interactions between sugar and hormone signaling 12 1.67 

 
 
 

Genes associated with photosynthesis and some related biochemical components were found 

among eCO2-responsive DEGs in both genotypes, although with different responses between them. The 

terms ‘photosynthesis’ and ‘chlorophyll metabolic process’ were mostly (78%/70%) related to down-

regulated DEGs under eCO2 in CL153, while Icatu only showed a slight (51%/53%) down-regulation 

of these DEGs (Figure 3.20). Conversely, GO terms associated with RuBisCO were largely (67%) 

associated with up-regulated DEGs in both genotypes under eCO2. 
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Antioxidant components were slightly more related to up-regulated DEGs under eCO2, more 

evidently in CL153 (57%) than Icatu (51%). Terms involving lipid metabolic FAD and LOX showed a 

similar parallelism between genotypes, being majorly associated with up-regulated DEGs (CL153: 

67%; Icatu: 63%). GO terms comprising cellular respiration and pyruvate kinase activity were even 

more markedly related to up-regulated DEGs, especially in Icatu (CL153: 69% and 75%; Icatu: 82% 

and 100%, respectively). However, while in CL153 malate dehydrogenase related-DEGs were mostly 

up-regulated (83%), in Icatu they were evenly distributed between the two types of regulation (50%). 

 

 

 
Figure 3.20. Proportion of up-(blue) and down-regulated (yellow) DEGs at eCO2 vs. aCO2, associated to specific 
physiological and biochemical responses in Icatu and CL153. 
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3.2.2. CO2 + Temperature 
 

Marques, I., Fernandes, I., Paulo, O. S., Lidon, F. C., DaMatta, F. M., Ramalho, J. C., & Ribeiro-
Barros, A. I. (2021). A Transcriptomic Approach to Understanding the Combined Impacts of Supra-
Optimal Temperatures and CO2 Revealed Different Responses in the Polyploid Coffea arabica and Its 
Diploid Progenitor C. canephora. International journal of molecular sciences, 22(6), 3125. 
https://doi.org/10.3390/ijms22063125 
 
 

Previously to this work, quality control analysis generated an average of 26 M clean reads, from 

an average 28 M raw reads (Table 3.6). Overall, a high proportion of reads were aligned to the reference 

genome, since only an average of ca. 3% of reads were not mapped to the reference genome of C. 

canephora. The number of genes expressed by each sample varied in a range of 2% to 6% between the 

control temperature (25 °C) and the two different supra-optimal temperatures of 37 °C and 42 °C, more 

evidently under eCO2. Overall, fewer genes were expressed as temperatures increased, especially in 

combination with eCO2 and in CL153, where the lowest number of expressed genes was observed 

(Figure 3.21A). The PCoA revealed a stronger transcriptomic response as a result of the effect of the 

highest temperature, since PC2 allowed a clear separation of all samples under 42ºC from samples under 

25ºC and 37ºC, regardless of [CO2] and genotype. PC1 was able to cluster CL153 samples, except for 

the plants grown at the highest temperature under aCO2, whereas Icatu samples presented a wider 

variation. Moreover, PC1 also separated samples at aCO2 from eCO2 under 42ºC in both genotypes 

(Figure 3.21B). 

 
Table 3.6. Summary of sequencing data and mapped reads for the samples of Coffee arabica cv. Icatu (Icatu) and C. canephora 
cv. CL153 (CL153). A, B, C correspond to biological replications. Plants were grown in two different stress temperatures, 
42/30°C and 37/28°C and the control temperature at 25/20ºC, in either 380 μmol mol-1 (aCO2) or 700 μmol mol-1 (eCO2). 
RAW READS: number of reads obtained after sequencing. CLEAN READS: number of reads passing the Illumina quality 
filters and downstream filters. % CLEAN: percentage of reads passing filters compared to the number of raw reads. % 
MULTIPLE MAP: proportion of reads aligned to exons of several overlapping genes compared to the number of clean reads. 
% UNMAPPED: proportion of non-aligning reads compared to the number of clean reads. 
 

GENOTYPE [CO2] 
(µL L-1) 

TEMP 
(ºC) REPLICATES RAW 

READS 
CLEAN 
READS 

% 
CLEAN 

% 
MULTIPLE 

MAP 

% 
UNMAPPED 

Icatu 380 25 1A 28702752 26442162 92.12 9.06 3.21 
   1B 28603251 26372236 92.20 12.78 3.10 
   1C 27795986 25107797 90.33 23.23 3.21 
   Average 28367330 25974065 91.60 15.02 3.18 
  37 9A 28029335 26158146 93.32 9.39 3.77 
   9B 26467175 24778725 93.62 9.45 3.74 
   9C 26399997 24568206 93.06 9.58 3.76 
   Average 26965502 25168359 93.34 9.47 3.75 
  42 2A 35347710 32590153 92.20 10.02 3.71 
   2B 36899936 34008889 92.17 8.77 3.33 
   2C 31079752 28583341 91.97 8.98 3.32 
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   Average 34442466 31727461 92.11 9.25 3.45 
Icatu 700 25 3A 30895839 29009249 93.89 13.35 3.19 
   3B 25630485 23784221 92.80 17.66 3.26 
   3C 31962251 29719153 92.98 18.10 3.31 
   Average 29496192 27504208 93.22 16.37 3.25 
  37 10A 29875514 27911427 93.43 9.60 3.78 
   10B 35512604 32842431 92.48 15.58 3.67 
   10C 24494246 22612119 92.32 15.02 3.61 
   Average 29960788 27788659 92.74 13.40 3.68 
  42 4A 25150070 23507568 93.47 19.66 3.70 
   4B 26381269 24732239 93.75 15.80 3.62 
   4C 23576551 22009513 93.35 19.21 3.68 
   Average 25035963 23416440 93.52 18.22 3.66 
CL153 380 25 5A 24532884 22853193 93.15 18.82 2.83 
   5B 28922635 26926317 93.10 19.89 2.86 
   5C 25702571 23940567 93.14 19.53 2.70 
   Average 26386030 24573359 93.13 19.41 2.79 
  37 11A 28288493 25823242 91.29 19.20 3.10 
   11B 27548373 25230205 91.59 21.19 3.07 
   11C 27339032 25133850 91.93 16.89 2.79 
   Average 27725299 25395766 91.60 19.09 2.98 
  42 6A 32771150 30503930 93.08 18.96 2.98 
   6B 29703647 27717207 93.31 13.25 2.58 
   6C 25487141 23755944 93.21 14.62 2.68 
   Average 29320646 27325694 93.20 15.61 2.74 
CL153 700 25 7A 29807104 27910922 93.64 12.96 2.53 
   7B 26162690 24625490 94.12 12.87 2.56 
   7C 25883732 24238764 93.64 14.27 2.88 
   Average 27284509 25591725 93.80 13.36 2.65 
  37 12A 33425021 30805515 92.16 15.54 2.97 
   12B 29484379 27221963 92.33 15.72 2.90 
   12C 28295180 26140159 92.38 14.71 2.96 
   Average 30401527 28055879 92.29 15.32 2.94 
  42 8A 21937614 20616287 93.98 17.78 2.98 
   8B 23329397 21918759 93.95 18.00 3.05 
   8C 29033721 27027236 93.09 21.94 3.18 
   Average 24766911 23187427 93.67 19.24 3.07 
Average    28346097 26309087 92.85 15.31 3.17 
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Figure 3.21. Gene expression profiles across samples. (A) Number of expressed genes in Icatu and CL153, grown either in 
aCO2 or eCO2, at control temperature conditions (25 °C) and the two supra-optimal temperatures (37 °C and 42 ºC). (B) PCoA 
of rlog transformed gene expression data. 
 
 
 

The highest number of DEGs was consistently found at 42ºC under eCO2 in both genotypes 

(Icatu: 13,134; CL153: 12,115). However, although the lowest number of DEGs was found at 37ºC in 

both genotypes, it was lower under eCO2 in Icatu (9,545), but under aCO2 in CL153 (8,240). 

In both genotypes, under the same [CO2], the majority of DEGs were shared by the two supra-optimal 

temperatures, ranging from 62% to 85% in Icatu and from 65% to 86% in CL153 (Figure 3.22). The 

number of specific DEGs was higher at 42ºC than 37ºC in both genotypes. Moreover, under eCO2 

specific DEGs in each genotype and at each temperature almost always decreased in relation to aCO2, 

with the exception for Icatu at 42ºC under eCO2, which reported the highest number of specific DEGs 

(Figure 3.22A). 

 

 
 

Figure 3.22. Treatment-specific and shared transcriptional patterns among DEGs at the two supra-optimal temperatures of 
37°C and 42 °C, relative to control, found in plants of Icatu (A, B) and CL153 (C, D), under aCO2 or eCO2. 
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Overall, the distribution of treatment-specific DEGs between up- and down-regulation was similar 

in both genotypes, with slightly more up- than down-regulated DEGs across conditions, especially 

under eCO2 at either supra-optimal temperature (Figure 3.23). 

 

 
Figure 3.23. The effect of the supra-optimal temperatures of 37ºC and 42 °C on the number of up- and down-regulated 
treatment-specific DEGs in Icatu and CL153, under aCO2 or eCO2. 
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samples at 37ºC are closer together, followed by CL153 under aCO2 and then under eCO2. The CL153 

samples at 42ºC appear closer to the 37ºC cluster than to Icatu samples at 42ºC. Moreover, the 

differences between samples of the two supra-optimal temperatures in CL153 seems to be increased by 

the effect of eCO2. 
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Figure 3.24. Heatmaps and dendrograms of the normalized log2 FC of treatment-specific DEGs in Icatu and CL153 as a 
response to 37 °C and 42 °C supra-optimal temperatures under aCO2 or eCO2. The plotted values are scaled by row for 
improved visualization. Hot colors represent up-regulated DEGs and cold colors represent down-regulated DEGs. 
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under both [CO2]. Also, in Icatu, up-regulated DEGs at 42°C under aCO2 were enriched for heat shock 

protein binding, while under eCO2 there was an enrichment of terms related to proteins folding and 

binding. 

In down-regulated DEGs there was an enrichment of 15 different GO terms in Icatu and 18 in 

CL153 (Figure 3.25B). At 37ºC, down-regulated DEGs showed no to very few enriched terms under 

aCO2, while under eCO2 there was an enrichment in a set of general molecular functions, such as 

oxidoreductase, transferase, binding and catalytic activities, which differed between genotypes. At 42°C 

in aCO2, microtubule motor activity and binding were highly enriched in down-regulated DEGs in Icatu, 

while CL153 showed an enrichment in the molecular functions related to transport. In this highest 

temperature, eCO2 triggered less enriched terms, with Icatu plants being mostly enriched in secondary 

metabolic process and lignin catabolic process, while CL153 plants showed an enrichment in molecular 

functions linked to calcium ion binding, and transferase and oxidoreductase activities. 
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Figure 3.25. ORA of GO terms performed against the functional annotation of the C. canephora genome. Enriched GO terms 
among up-regulated (A) and down-regulated (B) DEGs in Icatu and CL153, considering the effect of supra-optimal 
temperatures at 37 °C and 42°C, under either aCO2 or eCO2. GO terms are grouped by the main categories: biological process 
(GO:BP), molecular function (GO:MF), and cellular component (GO:CC). Counts indicate the number of DEGs annotated 
with each GO term and dots are colored by temperature treatment. 
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linked to antioxidant activities and 123 to lipid metabolism. The remainder 291 DEGs were found 

related to the respiratory pathway, specifically 170 to cellular respiration, 30 to malate dehydrogenase 

activity, and 91 to pyruvate kinase activity. The log2 FC of these DEGs varied widely but the most 

extreme values were always found at 42°C, regardless [CO2] conditions. 

Comparing responses between genotypes, overall, an equivalent number of DEGs related to 

photosynthesis, chlorophyll metabolic process and RuBisCO were found as a response to supra-optimal 

temperatures (Figure 3.26). However, the regulation of such genes was not always concordant between 

them. Although these DEGs were mostly up-regulated at 37ºC in both genotypes, DEGs at 42ºC were 

majorly up-regulated in CL153, but down-regulated in Icatu. The remaining terms were mostly 

associated with down-regulated DEGs, especially at 42°C under eCO2, although differences were still 

found between the two genotypes. The proportion of down-regulated DEGs involved in antioxidant 

activities and lipid metabolism were always higher in Icatu than CL153, except at 37 °C in eCO2, while 

in CL153 those DEGs were mostly up-regulated at 37°C, independently of [CO2]. Moreover, while the 

down-regulation of such DEGs increased with eCO2, regardless of temperature, in Icatu there was a 

decrease with eCO2 at 37ºC. Overall, in Icatu plants under both [CO2] conditions, DEGs involved in 

cellular respiration were mostly up-regulated at 37°C, but down-regulated at 42°C. Conversely, in 

CL153, these DEGs were mostly down-regulated, with the exception of DEGs at 37ºC under aCO2. 

Furthermore, DEGs involved in pyruvate kinase (PK) and malate dehydrogenase (MDH) activity, which 

are involved in glycolysis, were mostly down-regulated in all treatments, except in the MDH of CL153 

plants at 37 °C under aCO2. 
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Figure 3.26. Proportion (%) of the regulation of DEGs, related to photosynthesis and biochemical processes in Icatu (A) and 
CL153 (B) plants, as a response to 37°C and 42°C, under aCO2 or eCO2. Indicated in each bar are the number of DEGs 
associated with each term. 
 

 
 
Looking at more specific functions, it was found that more than half of the photosynthetic DEGs 

were involved in binding activities. Furthermore, DEGs related to the reaction centers of photosystems 

(PSs) I and II were down-regulated in Icatu and up-regulated in CL153 at 42°C and independently of 
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in chlorophyll a-b binding and most PsbQ and PsbP genes. 
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separated from the remaining treatments. Among these, DEGs were clustered primarily by temperature-

treatment, and then by genotype, regardless of [CO2] (Figure 3.27). 
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Figure 3.27. Heatmaps and dendrograms of the normalized log2 FC of photosynthesis-related DEGs as a response to the supra-
optimal temperatures of 37ºC and 42ºC, under aCO2 or eCO2, in Icatu and CL153 plants. The plotted values are scaled by 
row for improved visualization. Hot colors represent up-regulated DEGs and cold colors represent down-regulated DEGs. 
Column color labels group comparisons by temperature treatment, while row color labels group genes by GO annotation. 
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3.3. Limonium spp. 
 
Limonium raw sequences ranged from 15378236 to 29800668 in apomictic plants and from 

9372951 to 22701315 in sexual plants, being higher in the first group (Table 3.7). 

 
Table 3.7. Sequencing data from apomictic, facultative apomictic and sexual Limonium spp. samples. Raw reads, obtained 
after sequencing, generated clean reads after submission to quality control with FastQC and Trimmomatic software. [A-E 
indicate different biological replicates]. 
 

Reproductive 
strategy 

Species Stage Replicates Raw reads Clean Reads 

Apomicitc L. multiflorum S1 A 15378236 15219989 

B 26741297 26455783 

C 21263703 21069237 

D 19483758 19286282 

S2 A 16866816 16652632 

B 29800668 29525079 

C 18981960 18799302 

D 20651158 20501631 

E 24619068 24417862 

Facultative apomicitc L. dodartii S4 A 21100986 20800610 

B 16353613 16134223 

C 23992940 23473601 

Sexual L. ovalifolium S1 A 18792168 18610595 

S2 A 20711554 20512815 

S3/S4 A 9372951 9193765 

L. nydeggeri  S1 A 19245651 19060161 

S2 A 22701315 22458578 

S3/S4 A 18317853 18141561 

 
The assembled transcriptome generated a total of 162520 trinity unigenes, with a 43% GC content 

and a contig N50 of 2128 (Table 3.8). According to BUSCO, a 90% completeness was achieved in de 

novo assembled transcriptome indicating that we have generated a high-quality transcriptome assembly 

that could be used for further downstream analysis.  

 
Table 3.8. Quantification of basic quality and completeness metrics of Limonium de novo transcriptome assembly. Samples of 
apomictic (L. multiflorum) plants in stages S1 and S2, facultative apomictic (L. dodartii) plants in stage S4 and sexual (L. 
ovalifolium, L. nydeggeri) plants in stages S1, S2 and S3/S4 were combined to perform a de novo transcriptome assembly using 
Trinity software. 

Basic Metrics Values 

Total trinity unigenes 162520 

Total trinity transcripts (isoforms) 315983 

Percent GC (%) 42.94 

Contig N10 4592 

Contig N20 3604 
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Contig N30 2998 

Contig N40 2528 

Contig N50 2128 

Completness 
 

Total number of core genes queried 2326 

Number of core genes detected  

  Complete 2090 (89.85%) 

  Complete + Partial 2159 (92.82%) 

Number of missing core genes 167 (7.18%) 

Average number of orthologs per core gene 2.93 

% of detected core genes that have more than 1 ortholog 70.81 

Scores in BUSCO format C:89.8% [S:26.2%, D:63.6%], F:3.0%, M:7.2% 

 
The total number of expressed unigenes among Limonium samples was highest in apomictic 

plants in S2, followed by facultative apomictic plants in S4 (Figure 3.28). Among sexual plants, the 

number of expressed unigenes was higher in L. nydeggeri than in L. ovalifolium in S3/S4, but lower in 

the other stages. 

 

 
Figure 3.28. Total number of genes expressed by Limonium samples from apomictic L. multiflorum (APO), facultative 
apomictic Limonium dodartii (LD), and sexual L. nydeggeri (LN) and L. ovalifolium (LO) ovules in stages S1, S2, S3/S4. 

 

In the PCA analysis, PC1, which accounted for 71% of the variance, revealed a clear cluster of 

sexual plants in the right side of the graph (Figure 3.12). Also, PC2 separated the sexual plants from S1 

and S2 (upper-right quadrant) from S3/S4 plants (lower-right quadrant). Moreover, PC1 grouped all 

samples from apomictic and facultative apomictic plants from S1 in the left side of the graph, showing 

a higher dispersion for the remaining stages of these plants (Figure 3.29). 
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Figure 3.29. PCA of gene expression counts from Limonium nydeggeri (LN), L. ovalifolium (LO), L. multiflorum (APO) and 

L. dodartii (LD). Limonium samples were collected at multiple stages (S1, S2 and S3/S4). 

 
The heatmap clustered all apomictic plants in the same main branch, along with the facultative 

apomictic samples, which were scattered among them (Figure 3.30). Also, almost all sexual plants were 

clustered in the same main branch, except for L. ovalifolium in S3/S4, which was presented in a separate 

one. 

 

 
Figure 3.30. Heatmap and dendogram of the normalized log2 gene counts of apomictic (APO), facultative apomictic (LSP) 

and sexual (L. nydeggeri – LN, L. ovalifolium - LO) plants in S1, S1/S2, S3/S4 and S4 stages. Column color labels groups 

comparisons by type of reproduction (orange: sexual; light green: apomixis; dark red: facultative apomixis). 
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The highest number of DEGs was found in apomictic plants in S2 relative to sexual plants, 

especially relative to L. ovalifolium in S3/S4 (12837 vs. 4401; 11% vs. 4% of expressed genes in 

apomictic S2) (Figure 3.31). In apomictic S1 there were considerably less DEGs relative to sexual plants 

in S1 and S2, with just slightly more DEGs relative to L. nydeggeri than to L. ovalifolium. (average of 

3151 vs. 3061; 3% of expressed genes in apomictic S1). When comparing the two sexual plants, there 

was an increasing number of DEGs with the progression of stages, which varied from 616 to 1611. 

Among L. ovalifolium plants, the lowest number of DEGs was found between S2 and S1 (693), followed 

by the comparison between S3/S4 vs. S2 (1650) and finally S3/S4 vs. S1 (2067). However, in L. 

nydeggeri, S3/S4 vs. S1 plants generated less DEGs (351) than S2 vs. S1 (796) and S3/S4 vs. S2 (1346). 

Apomictic plants presented 1096 DEGs between its S1 and S2 stages and 806 DEGs in S2 plants relative 

to the facultative apomictic Limonium dodartii plants. 

 
 

 
Figure 3.31. Number of uniquely annotated differentially expressed genes (DEGs) in Limonium samples from apomictic L. 

multiflorum (APO), facultative apomictic L. dodartii (LD), and sexual L. nydeggeri (LN) and L. ovalifolium (LO) plants in 

stages S1, S2 and S3/S4. DEGs represent the number of significant genes found to be differently expressed in each comparison 

(namely: APO S1 vs. LN S1; APO S1 vs. LN S2; APO S1 vs. LO S1; APO S1 vs. LO S2; APO S2 vs. APO S1; APO S2 vs. 

LN S3/S4; APO S2 vs. LO S3/S4; APO S2 vs. LD S4; LN S2 vs. LN S1; LN S3/S4 vs. LN S1; LN S3/S4 vs. LN S2; LO S2 

vs. LO S1; LO S3/S4 vs. LO S1; LO S3/S4 vs. LO S2). 
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In sexual plants, the number of DEGs overlapped between different comparisons, differed 

between the two genotypes (Figure 3.32). While in L. nydeggeri the highest overlap was found between 

S3/S4 vs. S2 and S2 vs. S1, in L. ovalifolium the overlap was higher between S3/S4 vs. S2 and S3/S4 

vs. S1 (Figure 3.15A, 3.15B). Furthermore, the number of DEGs specific to a comparison was higher 

in S3/S4 vs. S2 (210; 36% of total DEGs) and in S3/S4 vs. S1 (242; 25% of total DEGs) in L. nydeggeri 

and L. ovalifolium, respectively. When comparing the two genotypes in the same stages, the highest 

overlap was found between S1 and S2. Also, the number of DEGs specific to a stage increased with the 

progressing of the stages. 

 
 
 

 
Figure 3.32. Weighted Venn diagrams of specific and overlapping differentially expressed genes (DEGs) found in Limonium 

plants, namely L. nydeggeri and L. ovalifolium sexual plants. DEGs were filtered by |log2 fold-change (Log2FC)| >2. Number 

of overlapping and specific DEGs in: [A] L. nydeggeri in S2 relative S1, S3/S4 relative to S1 and S3/S4 relative to S2; [B] L. 

ovalifolium in S2 relative S1, S3/S4 relative to S1 and S3/S4 relative to S2; [C] L. ovalifolium relative to L. nydeggeri in S1, 

S2 and S3/S4. 
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When comparing the initial and final stages of both sexual and apomictic plants, there was a 

higher overlap between DEGs at S3/S4 vs. S2 in L. nydeggeri and DEGs at L. multiflorum S2 vs. S1, 

than in L. ovalifolium at the same stages (133 vs. 13), but the opposite in DEGs at S3/S4 vs. S1 in sexual 

plants (40 vs. 74) (Figure 3.33). In both cases, the number of DEGs specific to a comparison was the 

highest in L. ovalifolium. 

 
 

 
Figure 3.33. Weighted Venn diagrams of specific and overlapping differentially expressed genes (DEGs) found in Limmonium 

plants, namely apomictic L. multiflorum and sexual L. nydeggeri and L. ovalifolium. DEGs were filtered by |log2 fold-change 

(Log2FC)| >2. Number of overlapping and specific DEGs in: [A] L. nydeggeri in S3/S4 relative to S1 (yellow) and L. 

ovalifolium in S3/S4 relative to S1 (pink); [B] L. nydeggeri in S3/S4 relative to S2 (yellow) and L. ovalifolium in S3/S4 relative 

to S2 (pink). 
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Analyzing DEGs between apomictic and sexual plants at the same stages, there was almost the 

same number of DEGs in comparisons between S1 and S2 (1287 and 1274) (Figure 3.34A-B). Among 

these, the number of overlapping DEGs was higher in S1 (602 vs. 407), but the number of specific 

DEGs was higher in S2 (611 vs. 207). In the comparisons with apomictic plants in S2, the number of 

overlapping DEGs was much higher with sexual plants than with facultative apomictic plants (838 vs. 

102) (Figure 3.34C). Moreover, the percentage of specific DEGs was the highest in L. ovalifolium 

(2562; 66% of total DEGs), followed by Limonium nydeggeri (272; 7% of total DEGs) and finally by 

L. dodartii (71; 2% of total DEGs) (Figure 3.34C). 

 

 
Figure 3.34. Weighted Venn diagrams of specific and overlapping differentially expressed genes (DEGs) found in Limonium 

plants, apomictic L. multiflorum, facultative apomictic Limonium dodartii and sexual L. nydeggeri and L. ovalifolium. DEGs 

were filtered by |log2 fold-change (Log2FC)| >2. Number of overlapping and specific DEGs in: [A] apomictic in S1 relative 

to L. nydeggeri (green) and relative to L. ovalifolium (purple) [B] apomictic in S1 relative to L. nydeggeri in S2 (green) and 

relative to L. ovalifolium in S2 (purple); [C] apomictic in S2 relative to L. nydeggeri in S3/S4 (green), to L. ovalifolium in 

S3/S4 (purple) and to Limonium dodartii in S4 (red). 
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In general, TF potentially related to male sterility were mostly associated with up-regulated 

DEGs in apomictic plants in both S1 and S2 relative to all stages of sexual and facultative apomictic 

plants (Figure 3.35). These TF were classified into 10 major families: AP2/ERF, bHLH, bZIP, C2C2, 

C2H2, HB, MADS, MYB, NAC and WRKY. The most representative families in all comparisons were 

WRKY,  which play a role in plant disease resistance, abiotic stress responses, nutrient deprivation, 

senescence, seed and trichome development, embryogenesis, as well as additional developmental and 

hormone-controlled processes, MYB, which are essential in regulatory networks controlling 

development, metabolism and responses to biotic and abiotic stresses, and AP2/ERF, which are also 

key regulators of several abiotic stresses and respond to multiple hormones. 

 
Figure 3.35. Distribution of differentially expressed transcription factors potentially related to male sterility classified into the 

10 families with the highest number of differentially expressed genes (DEGs) in Limonium plants, namely apomictic L. 

multiflorum, sexual L. nydeggeri and L. ovalifolium, and facultative apomictic Limonium dodartii: AP2/ERF, bHLH, bZIP, 

C2C2, C2H2, HB, MADS, MYB, NAC and WRKY. 

 

 

 

 

 

 

 

 



 75 

Overall, among DEGs annotated with pollen tube related GO terms, the majority were down-

regulated in L. multiflorum, related to either sexual and facultative apomictic plants, in both S1/S2 and 

S3/S4. However, DEGs of L. multiflorum in S2 relative to L. ovalifolium in S3/S4 were slightly up-

regulated (35 vs. 31) (Figure 3.36). 

 

 
Figure 3.36. Regulation of differentially expressed genes (DEGs) in Limonium plants in stages S1, S2, S3/S4 and S4, namely 

apomictic L. multiflorum, sexual L. nydeggeri and L. ovalifolium, and facultative apomictic Limonium dodartii, annotated with 

Gene Ontology (GO) terms related to pollen tube. DEGs were searched for the following terms: the biological processes pollen 

tube reception (GO:0010483), pollen tube development (GO:0048868), pollen tube growth (GO:0009860), regulation of pollen 

tube growth (GO:0080092) and pollen tube adhesion (GO:0009865), and the cellular components pollen tube (GO:0090406) 

and pollen tube tip (GO:0090404). DEGs represent the number of significant genes found to be differently expressed in each 

comparison (namely: APO S2 vs. APO S1; LN S2 vs. LN S1; LN S3/S4 vs. LN S1; LN S3/S4 vs. LN S2; LO S2 vs. LO S1; 

LO S3/S4 vs. LO S1; LO S3/S4 vs. LO S2; APO S1 vs. LN S1; APO S1 vs. LN S2; APO S1 vs. LO S1; APO S1 vs. LO S2; 

APO S2 vs. LN S3/S4; APO S2 vs. LO S3/S4; APO S2 vs. LSP S4). 
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Some DEGs were searched between multiple comparisons, although presenting opposite 

regulation. Among DEGs of L. multiflorum in S1, only 24 were down-regulated in relative to L. 

nydeggeri but up-regulated in L. ovalifolium (Figure 3.37A). However, among DEGs of L. multiflorum 

in S2 there were more opposite regulations across comparisons at S3/S4. While 124 DEGs were down-

regulated relative to L. nydeggeri, but up-regulated relative to L. ovalifolium, 21 were up-regulated in 

L. nydeggeri, but down-regulated in L. ovalifolium (Figure 3. 37B). Also, while 20 DEGs were up-

regulated relative to L. nydeggeri, but down-regulated relative to L. dodartii, 3 DEGs were down-

regulated relative to L. nydeggeri, but up-regulated relative to L. dodartii (Figure 3. 37C). Furthermore, 

while 65 DEGs were up-regulated relative to L. nydeggeri, but down-regulated relative to L. dodartii, 

3 DEGs were down-regulated relative to L. nydeggeri, but up-regulated relative to L. dodartii (Figure 

3. 37D). Among the 124 DEGs of L. multiflorum in S2 which were down-regulated relative to L. 

nydeggeri in S3/S4, but up-regulated relative to L. ovalifolium in S3/S4, it was found an enrichment of 

the WikiPathways Flavonoid biosynthesis. 

 

 
Figure 3.37. Total number of differentially expressed genes (DEGs) shared between two comparisons with opposite 

regulation, namely apomictic plants (Limonium multiflorum) in S1 relative to sexual (L. nydeggeri and L. ovalifolium) in S1 

and apomictic plants (Limonium multiflorum) in S2 relative to sexual (L. nydeggeri and L. ovalifolium) in S3/S4 and relative 

to facultative apomictic plants (L. dodartii) in S3/S4. Annotations of the transcripts Arabidopsis thaliana homologs were 

retrieved from UniprotKB. [­: Up-regulated; ¯: Down-regulated]. 
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A set of the DEGs found in apomictic plants, either in S1 and S2, were found to be totally knocked 

out (KO) in both sexual plants (L. nydeggeri and L. ovalifolium), in S1, S2 and S3/S4, and facultative 

apomictic plants (L. dodartii) in S4. In apomictic DEGs in S1, 16 and 34 DEGs were KO in L. nydeggeri 

in S1 and S2, respectively, and 22 and 5 DEGs were KO in L. ovalifolium in S1 and S2, respectively. 

In apomictic DEGs in S2, 30 and 2170 DEGs were KO in L. nydeggeri and L. ovalifolium, respectively, 

both in S3/S4. Also, 1 DEG was KO in L. dodartii in S4. Among the DEGs in L. multiflorum in S1 

which were KO in L. ovalifolium in S1 it was found and enrichment in Tryptophan metabolism 

according to KEGG database. Furthermore, DEGs in L. multiflorum in S2 which were KO in L. 

nydeggeri in S3/S4 were enriched in Ethylene signalling pathway, according to WikiPathways, and in 

Aminoacyl-tRNA biosynthesis and Lysine degradation, according to KEGG. 



 78 

Chapter 4 
 
 

4. Discussion & Conclusion 
 
The growing volume of transcriptomic data can open doors to major biological breakthroughs. 

However, RNA-seq for differential expression analysis is still in development and, although several 

software has been developed for this technique, there is no ideal method or tool for all the analyses and 

no clear consensus about its best practices. This difficulty is aggravated when a reference genome is 

lacking, due to the several issues related with transcriptome assembly, such as redundancy and the need 

of high computer power. Generally, it’s up to the user to choose the better and more up-to-date software 

according to each dataset and main objectives of the research, which can greatly influence the outcome 

of the experiment. As such, the use of appropriate parameters and tools is of the utmost importance in 

a proper bioinformatics analysis. Nevertheless, it’s also important to ensure that the laboratory 

procedures that precede it are suitable, as the quality of the data also has a great impact on the analysis 

results. Datasets containing an appropriate number of biological replicates are important for an unbiased 

analysis of the data, an improved quality of libraries is key to reduce duplicates through the reduction 

of the number of PCR cycles during preparation and an increased sequencing depth can help mitigate 

the false discovery rate by reducing the genetic background and increasing sequencing sampling. The 

main purpose of this thesis was the detection and functional annotation of significant DEGs, using the 

best parameters, tools and software for each dataset, according to the research goals. Thus, the analysis 

presented here sets up a starting point for future transcriptome studies in Casuarina glauca, Coffea 

arabica, C. canephora and Limonium spp. 

 

After sequencing, quality control is an essential step to ensure the quality of the samples to 

correctly detect DEGs. The FastQC tool, which was used in this project, is a reference and useful tool 

to get an overview of samples quality. In general, reads presented good quality, leading only to moderate 

filtering and trimming, which aimed to maximize general quality, remove adapters and to avoid 

excessively multiple alignments in the alignment step, allowing libraries to keep their length and depth 

at adequate levels, according to the state of the art. However, although this step is important to eliminate 

very short and low-quality reads, most recent studies suggests that the trimming of adapters should be 

omitted in good quality samples, since they can be eliminated through soft-clipped in the assembly step 
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with the most common assemblers (e.g., STAR) (Liao & Shi, 2020). By doing so, adapters can be 

eliminated from the samples, reducing computational time and the risk of losing reads with relevant 

biological meaning.  Thus, in future analyses, this step can be improved by choosing to eliminate only 

low-quality bases or other contaminants. Also, since most reference tools used in quality control are 

optimized for DNA, it would be interesting to develop more software specifically designed for RNA, 

which would allow the user to confidently perform filtering, managing to keep the greatest number of 

reads, with the highest possible quality. 

 

RNA-seq robustness can also be affected by the presence of duplicated reads due to the 

amplification step. However, the most used tools for PCR duplicate removal rely only on the mapping 

coordinates of sequencing reads, which does not allow distinguishing between PCR duplicates and valid 

biological read duplicates. As such, since most identical reads reflect biological reality, the removal of 

duplicates can erroneously eliminate usable reads, particularly from short transcripts and small RNAs 

(Fu et al., 2018). Nevertheless, while duplication removal can produce a high proportion of false 

negatives, the absence of this step is biased towards false positive results (Klepikova et al., 2017). 

Currently, there are tools that allows the estimation of PCR duplication rate, assessing the fraction of 

duplicates that correspond to natural read duplicates. However, studies show that only a small fraction 

of read duplicates in RNA-seq data are due to PCR amplification when the library complexity is 

adequate, reinforcing the need to adjust the library preparation to improve sequencing library 

complexity, especially in very low input or extremely deep RNA-sequencing projects (Parekh et 

al.  2016; Bansal, 2017). Plant RNA-seq data frequently contains large amounts of duplicated reads, 

due to the fact that gene expression is controlled by only a small number of transcripts in many plant 

tissues, such as leaves. Also, studies have found that a large fraction of computationally identified read 

duplicates are not from PCR amplification and can be explained by sampling and fragmentation bias, 

having been observed that their elimination not only does not improve accuracy nor precision, but can 

additionally worsen the power and the FDR for differential gene expression (Parekh et al.  2016). As 

such, although the duplication rate can still be used as quality control, in RNA-seq projects PCR 

duplicates are normally kept in. Nevertheless, today it’s possible to use a laboratory technique that 

allows the identification of reads unquestionably, giving bioinformatics the possibility of differentiating 

the natural duplication from the duplication generated by amplification, through Unique Molecular 

Identifiers (UMI). This approach is mainly recommended for very low input samples and very deep 

sequencing of RNA-seq libraries and can be useful for future studies (Fu et al., 2018). Furthermore, 

when dealing with non-model organisms, it is often useful to filter out duplicate annotations from 

multiple genes that map to the same homolog when blasting against reference genomes from related 

species. This approach often leads to a large reduction in the number of DEGs and, while this process 

can help to reduce the duplication rate introduced by library preparation, it can also exclude some 
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important information, and, thus, the choice of filtering these genes should be made based on the 

duplication rate of the assembly and the number of repeated annotations among DEGs. 

 

The detection and elimination of outliers is another important step to achieve good results in the 

analysis of differential expression, since the presence of these elements can substantially alter the 

differences found between the compared samples. The first step in detecting outliers is to use a 

sufficiently large number of replicates that allow the user to identify those that do not fit into the 

remaining group of samples. The most adequate number of replicates can be statistically measured 

considering several factors, especially intra-specific variation. As such, in this project, the detection of 

outliers was only possible in the Coffea datasets, which was performed through visual inspection of the 

PCA graphics. Very recent studies allow this procedure to be performed using software specially 

designed for RNA-seq data, which allows the detection of significant differences between samples of 

the same group, identifying those who, unequivocally, should not be part of it (Kumar et al., 2020; Chen 

et al., 2020). Thus, in future analyses, it would be interesting to use one of these tools, comparing its 

results with those of visual inspection to ensure greater quality control. 

 

I chose to use two different approaches when dealing with datasets without replicates. In the 

analysis of the Casuarina dataset, I applied more conservative parameters, filtering the results based on 

the overlap between 3 different DEGs detection tools, namely NOISeq, DESeq and edgeR. By doing so, 

I intended to decrease the probability of detecting false positives derived from the inability to assign 

significance (p-value) to the results. However, this methodology also minimizes the number of true 

positives, allowing only a small number of DEGs to be identified. Thus, this type of procedure allows 

for a preliminary analysis where only some probable DEGs and their respective functions are 

highlighted. On the other hand, in the analysis of Limonium I decided to use only edgeR, which is 

referred to in the literature as being very efficient, even in cases where there are few or no replicates 

(Chen et. al., 2016). At the risk of having a higher number of false positives, this approach is more 

exploratory and can be useful to pinpoint the most important genes and functions that can potentially 

be differential expressed, broadening the results and allowing for a more general view of the 

transcriptome, which can be even more useful for future studies. 

 

The de novo transcriptome assembly is an invaluable tool to study organisms, especially when a 

reference genome is missing, since it can be used to perform annotation using related species reference 

genomes. However, the study of non-model organisms is still one of the great challenges of RNA-seq 

analysis. Since most research involving non-model species are focused on protein-coding genes, many 

genes are considered as unrelated or uninformative in annotation databases, due to the fact that only a 

small proportion of the whole gene set are assigned to pathways (Sundaram et al., 2017). To better 

understand the genetic processes behind the non-model organisms, it would be important to assemble 



 81 

good quality reference genomes that could be used in the future to improve transcriptomic studies and 

better unravel their biological functions and pathways. 

 

Functional analysis of transcriptomic datasets is important to assign biological meaning to data. 

As such, and although there is a huge number of knowledge databases and annotations tools, the GO 

database represents one of the most popular in RNA-seq studies (Ashburner et al., 2000). However, 

whether through direct analysis of the transcriptome annotation, or through third-party software and 

methods, such as enrichment analysis, the conclusions drawn from GO terms should always consider 

the prior knowledge about the organism and/or mechanisms under study. Furthermore, many genes 

annotated with the same GO terms doesn’t necessarily have the exact same functions, since many terms 

are too broad to draw conclusions about the specific functions and pathways in which each gene is 

involved. Nevertheless, this type of analysis can be very interesting to get a general idea of the main 

biological processes, molecular functions and cellular components associated with the genes under 

study, allowing the characterization of pathways according to the DEGs regulation. Another important 

aspect in this type of analysis is the identification of which genes are essential in each metabolic 

pathway under study, due to the ability of some genes to enable or unable an entire process, potentiating 

or disabling other genes. For the future, it would be interesting to develop more tools that consider the 

role of genes in metabolic pathways and the interactions and interdependencies between them. 

 

In this thesis, I created a considerable set of scripts with the intention of automating processes 

that would otherwise become very time consuming and processes whose regularity of application 

justifies its automation, recovering the time invested in its development. These scripts have been 

documented and developed so that they can be used by other users with similar data and objectives. 

Given the interconnection of these scripts, it’s possible to use them not only independently, but also 

sequentially. One of the projects for the future could be the creation of a pipeline that automatically 

uses subsets of these scripts to generate faster results. However, since there is still no single best 

practices and pipelines for all RNA-seq data analyzes, the individualized way in which the scripts were 

created allows them to be used more freely according to the data and objectives of each project, without 

creating one single model for all cases, which would limit its uses. Another promising important 

development for the future is the creation of a user-friendly web interface that would allow the 

application of these scripts, individually or sequentially, so that users could applied them easily without 

having to deal with the code behind them, which could be especially useful for inexperienced 

researchers, with the potential to significantly speed up the analysis. Reproducibility is a key element 

in science research, due to the ability of replicating experiments independently of location and users. 

As such, all data produced by this work is publicly available (or soon to be published), alongside the 

full computational analysis workflow, which is clearly described in this manuscript. However, different 

releases of the same tools and/or the system libraries used by such tools might lead to some 
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reproducibility issues, which should be accounted for and carefully addressed. Reproducibility is a key 

element in science research, due to the ability of replicating experiments independently of location and 

users. As such, all data produced by this work is publicly available (or soon to be published), alongside 

the full computational analysis workflow, which is clearly described in this manuscript. However, 

different releases of the same tools and/or the system libraries used by such tools might lead to some 

reproducibility issues, which should be accounted for and carefully addressed. 

 

One of the biggest concerns of RNA-seq analysis is that the choice of tools and parameters 

depends heavily on the user. Thus, the quality of the analysis is not only reflected by the quality of the 

data or equipment, but also by the experience and competence of the users. As such, bearing in mind 

that this is an area in constant expansion, one of the most important steps is to always update knowledge 

according to the state of the art to guarantee the best quality of results. Since there is no gold standard 

for RNA-seq data analysis, it is very important that the user knows the current best practices and tools 

available for each data type, as well as how to interpret the results according to their context. Moreover, 

bioinformatics should always work with other scientists whose expertise can contribute to find the most 

accurate biological meaning of the results. Ideally, this partnership should start before the data 

collection, so that they can make decisions together about RNA-seq methods, namely sequencing 

platforms, read depth and length, and number of replicates of each sample, according to the available 

budget and to the type of libraries needed, to better define goals, minimize bias, optimize sequencing 

quality, manage expectations, and improve the overall analysis results. 

 

This project contributes to a better understanding of the different expression profiles of the 

species in investigation, according to each growth conditions, allowing for further studies and 

integration with other omics, that undoubtedly expand the application of RNA-seq. More specifically, 

this work allowed to uncover some mechanisms of gene expression associated with the resistance of 

Casuarina glauca, which can be used in the future to develop comprehensive stress tolerance studies 

of these species and related species. Although there are already several studies with Coffea, the genetic 

implications of climate change in this genus are not yet fully known. With this project, it was possible 

to study some of the main genes of its two most commercially traded species related with stress 

tolerance and susceptibility, namely elevated CO2 and high temperatures, which can greatly change 

with global warming. Moreover, since the mechanisms behind the genetic activation and inactivation 

of apomictic phenomena in Limonium are still unknown, this work can be seen as a first step in exploring 

this adaptation, which can be further developed in future studies. 

 

Over the past decade, RNA-seq has become an essential method for analyzing transcriptomes 

and mRNA splicing. Nowadays, RNA-seq methods can be used to study many different aspects of RNA 

biology, including single-cell gene expression, translation, and RNA structure. New applications such 
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as spatial transcriptomics (spatialomics), new technologies for long, direct RNA-seq reading and better 

computational tools for data analysis are currently being explored and developed, contributing to a more 

complete understanding of RNA mechanisms, from the location of transcription to the folding and 

intermolecular interactions that govern its function (Stark et al., 2019). Single-cell sequencing is 

becoming standard in many laboratories and advances in in situ RNA-seq and imaging methods have 

already made it possible to generate transcriptome data similar to the amounts of data available from 

droplet-based single-cell methods (Hwang et al., 2018). Furthermore, the revolution from bulk RNA 

sequencing to single‐molecular, single‐cell and spatial transcriptome approaches has enabled 

increasingly accurate, individual cell resolution incorporated with spatial information, which is likely 

to be widely adopted in the future if its technical limitations can be overcome. It’s also anticipated that 

the development of long-read sequencing methods will replace the Illumina short-read RNA-seq as the 

default method for a substantial proportion of users. Although some improvements are still needed, 

namely in throughput increase and error rates reduction, if it becomes as affordable and reliable as short-

read, the advantages of long-read sequencing are such that it is likely to be the preferred choice in the 

future (Amarasinghe et al., 2020). Moreover, chromatin structure technologies, such as chromatin 

conformation capture analysis (3C) and its several derivatives including circular chromosome 

conformation capture (4C), carbon copy chromosome conformation capture (5C), ChIP-Loop, Hi-C and 

capture Hi-C, have been developed and improved to detect chromatin structure as well as unknown 

interacting regions, which can be combined with RNA-seq analysis to detect structure variation-related 

differentially expressed genes (Han et al., 2018). Due to foreseeable major advances in technology, 

general predictions about the development of RNA-seq over the next decade are likely to be too 

conservative. Nevertheless, RNA-seq is expected to develop fast and to open doors for an unprecedently 

knowledge of the architecture and functionality of the cell, unraveling multiple areas of biology. 
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